Notes for Lecture 20 Mon, 3/17/2025

\ Application of variation of constants: the second order case \

Review. In Theorem 96 we showed that y’= A(t) y + f(¢) has the particular solution

%@%ﬂﬂw/®®‘%ﬁﬂu

where @ () is a fundamental matrix solution to y’'= A(t) y.

Let us apply this result to the case of a second-order LDE
y'+ Py + Q()y=F(t).

We can write this DE as a first-order system by introducing the vector y = { ;’, }:

y:[£u>;@]y+{ﬁi>}

If the second-order homogeneous DE (that is, y” + P(t)y’ + Q(t)y = 0) has general solution
Chy1(t) + Caya(t), then a fundamentral matrix for the first-order homogeneous system is

@(t):{yl 92}

Y1 Y5

(recall that each column of ®() represents a solution y of the system). Our formula from
Theorem 96 now gives us a particular solution of the inhomogeneous system:

%@>=<wq/@w—vaMt
:[ylyZ]/ 1 Y2 —Y2
yi y2 ) v —viy2| —vi %
[z ) 7
Y1 Y2 Y1Ys — Y1Y2| Y1

— o I’ F
- el ) il 2]
Y1Ys — Y1Y2 Y1 Y1Ya — Y192 Y2

The first entry of y,, is the corresponding particular solution to the second-order inhomogeneous
DE:

| F ]

yp(t) - Cl(t>y1(t) + Cz(t>y2(t), Cl(t) — /%dt Cg(t) — / ylgf)(};(t) dt.

where W (t) = y1(t)ys(t) — y1(t)y=(t) is the Wronskian.
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Some special functions and the power series method

‘ Review: power series

Definition 100. A function y(x) is analytic around = =z if it has a power series

o0
= Z an(r — o)™
n=0

Note. In the next theorem, we will see that this power series is the Taylor series of y(z) around x = xo.

Power series are very pleasant to work with because they behave just like polynomials. For instance,
we can differentiate and integrate them:

oo
o Ify(x)= Z an(x —x0)", then y'( Z na,(z —x0)" "' (another power series!).
n=0 n=1
We can rewrite the series as y/(x) = Z nan(z —xo)" 1= Z (n+1Dapy1(x—x0)™
n=1

The result is a power series just like the one we started with. L|keW|se, for higher derivatives.
oo
a

. /y(m)dm: " (z—xo)" T+ C

o n+1

Theorem 101. If y(z) is analytic around x =z, then y(z) is infinitely differentiable and

> (n)
x)= Z an(x —x0)"™ with a,= y—(a:o).

n!

Caution. Analyticity is needed in this theorem; being infinitely differentiable is not enough. For instance, y(z) =

e~ 1/%" is infinitely differentiable around = =0 (and everywhere else). However, 3™ (0) =0 for all n.

In particular, if y(x) is analytic at 2 =0, then

(n) 1 1
-3 L0 = =y(0) + ¢ (0)z + 53" (0)2? + 5y (0)" +..

n=0

We have already seen the following example.

o0 n

T __ r 1 2 1 3
Example 102. ¢ —Zom—l-l-x-l-ga: -I-ﬁas + ...
n—

Once again, notice how the power series cIearIy has the property that y’ =y (as well as y(0) =1).

It follows from here that, for instance, ¢2 Z (21‘) =142z+222+ %x?’ +...

Example 103. Determine the power series for 7¢3% (at x = O)

[ee]

— to conclude that
n= 0

Solution. Instead of starting from scratch, we can use that e ="

338) 73" 63 63 189
3 _ 2 23 24
r=7 E E I =T+ 213:—}——30 + +— 3 +..

n=0
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| Power series solutions to DE

Given any DE, we can approximate analytic solutions by working with the first few terms of the
power series.

Example 104. (Airy equation, part ) Let y(z) be the unique solution to the IVP 3" = xy,
y(0)=a, y'(0) =b. Determine the first several terms (up to z°) in the power series of y(z).

Solution. (successive differentiation) From the DE, y”/(0)=0-y(0) =0.

Differentiating both sides of the DE, we obtain y'"/ =y + zy’ so that y””/(0) = y(0) +0- y’(0) =a.
Likewise, y*) =2y’ 4+ zy" shows y(*)(0) = 2y'(0) = 2b.

Continuing, y®) =3y” + 2y’ so that y(5)(0) =3y”(0)=0.

Continuing, %) =4y"” + 2y®) so that () (0) = 4y"”(0) = 4a.

Hence, y(z) =a+bx + %y”(())x2 + %y’”(O)az3 + %y(4)(0)m4 + %y(m(O)mE’ + %y(ﬁ)(O)x6 +...
— a3, b 4, a ¢

—a—i—bx—l—gm + 5Ttz +

Comment. Do you see the general pattern? We will revisit this example soon.

Solution. (plug in power series) The powers series y = ag + a1z + asx? + azx® + asx* + ... becomes
y=a-+br+ a2x? 4 azx> + asx* + ... because of the initial conditions.

To determine ag, as, a4, as, ag, we equate the coefficients of:

y"” = 2as+ 6asz + 12a4x2 + 20asz> + 30agz* + ...
Ty = ax +bx?+ asx® + asx* + ...

We find 2a2 =0, 6az=a, 12a4 =1"b, 20a5 = as, 30ag = as.

a5=22=0, ag=—2=-2_ Hence, y(ac):a+bx+3w3+1—b2w4+—x6+...

a
Soaz=0, az=, a4 20 30 180 6
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