Notes for Lecture 14

Mon, 2/24/2025

\ Stability of autonomous linear differential equations

Example 82. (spiral source, spiral sink, center point)

(a) Analyze the system %: ; :{ _14 i M C; }
df g ] x
(b) Analyze the system i _[ _14 1 H y }
(c) Analyze the system %: ; :{ _04 é M C; }
Solution.
(a)

The eigenvalues are A = 1 & 27 and the general solution, in real

form, is:
5 | =] it et + ool 5 Jef

In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from e! — oo as t — oo that all
solutions “flow away"” from the origin because they have increasing

amplitude).
Review. [ cos(t) ] parametrizes the unit circle.
sin(t)
P cos(t) . .
Similarly, [ 2sin (1) ] parametrizes an ellipse.
(b) : : o
The eigenvalues are A = —1 + 2¢ and the general solution, in real
form, is:
x(t) | _ cos(2t) —t sin(2t) —t
[ u(t) ] - Cl{ ~2sin(2t) ]e + CQ[ 2cos(21) ]e
In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e™t — 0 as t — oo
that all solutions “flow into” the origin because their amplitude
goes to zero).
Comment. Note that [ zgg ] solves the first system if and only
if [ Zg:g ] is a solution to the second. Consequently, the phase
portraits look alike but all arrows are reversed.
(c) : : o
The eigenvalues are A = +-2i and the general solution, in real form,
is:
z(t) | _ cos(2t) sin(2t)
[ y(t) ]_Cl{ —2sin(2t) ]+02[ 2cos(2t) }

In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period 7 and
therefore loop around the origin; with each trajectory a perfect
ellipse).
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Review. In Example 79, we considered the system — =y — 5z, d—f:éla: —2y.

We found that it has general solution { Z;gg ]: C’l[ }l }e_t + CQ[ 711 ]e‘ﬁt.
In particular, the only equilibrium point is (0,0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 79:

dy
Todt

In particular, determine the general solution as well as all equilibrium points and their stability.

Example 83. Analyze the system i—f =y—5br+3 =4x —2y.

Solution. As reviewed above, we looked at the corresponding homogeneous system in Example 79 and found

that its general solution is [ Zg; ]:Cl[ 411 }e*t—}-C’g{ _11 ]6*61".

!
Note that we can write the present system in matrix form as [ i } = M[ 9; ]Jr[ g ] with M:{ -5 1 ]

2
- - T 3] - x| __as—1[3]__1[ -2 —1][3]_[1
To find the equilibrium point, we solve M{ y ]+[ o ]—Otoflnd { y ]— M [ 0 ]— [ L H o }—[ 5 ]
The fact that { ; ] is an equilibrium point means that [ i }:[ ; ] is a particular solution!
(Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)
Thus, the general solution must be { zég ]:{ ; ]Jrcl{ i ]e_t +C’2{ _11 ]6_6t (that is, the particular solution
plus the general solution of the homogeneous system that we solved in Example 79).

As a result, the phase portrait is going to look just as in Example 79 but shifted by [ ; ]:

Because both eigenvalues (—1 and —6) are negative, { ; ] is an asymptotically stable equilibrium point. More

precisely, it is what is called a nodal source.
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As we have started to observe, the eigenvalues determine the stability of the equilibrium point in
the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form %[ z ] = M[ z ] + ¢, where c:[ 21 ] is a constant
2

vector. Because the system is autonomous, the matrix M and the inhomogeneous part ¢ cannot depend on t.

(stability of autonomous linear 2-dimensional systems)

eigenvalues behaviour | stability solutions have terms like
real and both positive nodal source | unstable e3t, et
real and both negative nodal sink | asymptotically stable |e=3t e~ 7t
real and opposite signs saddle unstable e 3, et
complex with positive real part |spiral source | unstable e3tcos(Tt), e3tsin(7t)
complex with negative real part | spiral sink asymptotically stable |e=3tcos(7t), e 3tsin(7t)
purely imaginary center point | stable cos(7t), sin(7t)

(not asymptotically stable)

‘ Review: Linearizations of nonlinear functions

Recall from Calculus | that a function f(x) around a point z( has the linearization

f(x)~ f(xo) + f'(wo)(x — o).

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at zo.

Recall from Calculus Il that a function f(z,y) around a point (z¢, yo) has the linearization

[z, y)= f(xo,y0) + fe(T0, yo) (T — 20) + fy(x0, Y0)(¥ — Yo)-

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x, y) at (xo, yo)-
Recall that f, = %f(x, y) and f, = a—if(x, y) are the partial derivatives of f.

Example 84. Determine the linearization of the function 3 + 2242 at (2,1).

Solution. If f(z,y)=3+2zy? then f, =2y and f, =4zy. In particular, f,(2,1) =2 and f,(2,1)=8.
Accordingly, the linearization is f(2,1) + f2(2,1)(z —2) + fy(2,1)(y — 1) =7+2(x —2) +8(y — 1).
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