
Notes for Lecture 14 Mon, 2/24/2025

Stability of autonomous linear differential equations

Example 82. (spiral source, spiral sink, center point)
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Solution.

(a)
The eigenvalues are �= 1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)
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In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from et!1 as t!1 that all
solutions �flow away� from the origin because they have increasing
amplitude).

Review.
�
cos(t)
sin(t)

�
parametrizes the unit circle.

Similarly,
�

cos(t)
2sin(t)

�
parametrizes an ellipse.
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(b)
The eigenvalues are �=¡1� 2i and the general solution, in real
form, is:�
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In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e¡t! 0 as t!1
that all solutions �flow into� the origin because their amplitude
goes to zero).

Comment. Note that
�
x(t)
y(t)

�
solves the first system if and only

if
�
x(¡t)
y(¡t)

�
is a solution to the second. Consequently, the phase

portraits look alike but all arrows are reversed.
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(c)
The eigenvalues are �=�2i and the general solution, in real form,
is:�
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cos(2t)
¡2sin(2t)
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In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period � and
therefore loop around the origin; with each trajectory a perfect
ellipse).
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Review. In Example 79, we considered the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

We found that it has general solution
�
x(t)
y(t)
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�
e¡6t.

In particular, the only equilibrium point is (0; 0) and it is asymptotically stable.

The following example is an inhomogeneous version of Example 79:

Example 83. Analyze the system dx

dt
= y¡ 5x+3, dy

dt
=4x¡ 2y.

In particular, determine the general solution as well as all equilibrium points and their stability.

Solution. As reviewed above, we looked at the corresponding homogeneous system in Example 79 and found
that its general solution is
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Note that we can write the present system in matrix form as
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To find the equilibrium point, we solveM
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The fact that
�
1
2

�
is an equilibrium point means that

�
x
y

�
=
�
1
2

�
is a particular solution!

(Make sure that you see that it has exactly the form we expect from the method of undetermined coefficients!)

Thus, the general solution must be
�
x(t)
y(t)

�
=
�
1
2

�
+C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (that is, the particular solution

plus the general solution of the homogeneous system that we solved in Example 79).

As a result, the phase portrait is going to look just as in Example 79 but shifted by
�
1
2

�
:
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Because both eigenvalues (¡1 and ¡6) are negative,
�
1
2

�
is an asymptotically stable equilibrium point. More

precisely, it is what is called a nodal source.
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As we have started to observe, the eigenvalues determine the stability of the equilibrium point in
the case of an autonomous linear 2-dimensional systems. The following table gives an overview.

Important. Note that such a system must be of the form d

dt

�
x
y

�
=M

�
x
y

�
+ c, where c=

�
c1
c2

�
is a constant

vector. Because the system is autonomous, the matrix M and the inhomogeneous part c cannot depend on t.

(stability of autonomous linear 2-dimensional systems)

eigenvalues behaviour stability solutions have terms like
real and both positive nodal source unstable e3t, e7t

real and both negative nodal sink asymptotically stable e¡3t, e¡7t

real and opposite signs saddle unstable e¡3t, e7t

complex with positive real part spiral source unstable e3tcos(7t), e3tsin(7t)
complex with negative real part spiral sink asymptotically stable e¡3tcos(7t), e¡3tsin(7t)
purely imaginary center point stable

(not asymptotically stable)

cos(7t), sin(7t)

Review: Linearizations of nonlinear functions

Recall from Calculus I that a function f(x) around a point x0 has the linearization

f(x)� f(x0)+ f 0(x0)(x¡x0):

Here, the right-hand side is the linearization and we also know it as the tangent line to f(x) at x0.

Recall from Calculus III that a function f(x; y) around a point (x0; y0) has the linearization

f(x; y)� f(x0; y0)+ fx(x0; y0)(x¡x0)+ fy(x0; y0)(y¡ y0):

Again, the right-hand side is the linearization. This time, it describes the tangent plane to f(x; y) at (x0; y0).

Recall that fx=
@

@x
f(x; y) and fy=

@

@y
f(x; y) are the partial derivatives of f .

Example 84. Determine the linearization of the function 3+2xy2 at (2; 1).
Solution. If f(x; y)= 3+2xy2, then fx=2y2 and fy=4xy. In particular, fx(2; 1)=2 and fy(2; 1)= 8.

Accordingly, the linearization is f(2; 1)+ fx(2; 1)(x¡ 2)+ fy(2; 1)(y¡ 1)=7+2(x¡ 2)+ 8(y¡ 1).
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