

Please print your name:

No notes, calculators or tools of any kind are permitted. There are 32 points in total. You need to show work to receive full credit.

Good luck!

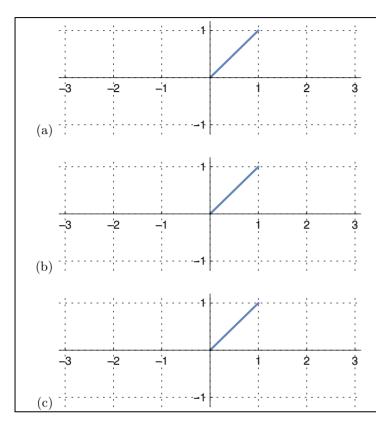
Problem 1. (5 points) Derive a recursive description of a power series solution y(x) of the DE $y'' = (3x^2 - 2)y$.

Problem 2. (3 points) Derive a recursive description of the power series for $y(x) = \frac{1}{1 - 3x + 2x^2}$.

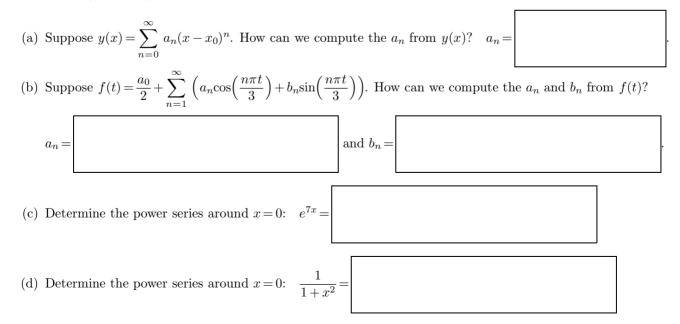
Problem 3. (4 points) Consider the function f(t) = t, defined for $t \in [0, 1]$.

- (a) Sketch the Fourier series of f(t) for $t \in [-3, 3]$.
- (b) Sketch the Fourier cosine series of f(t) for $t \in [-3, 3]$.
- (c) Sketch the Fourier sine series of f(t) for $t \in [-3, 3]$.

In each sketch, carefully mark the values of the Fourier series at discontinuities.



Problem 4. (5 points)



Problem 5. (3 points) A mass-spring system is described by the equation $y'' + ky = \sum_{n=1}^{\infty} \frac{1}{n^2 + 7} \cos\left(\frac{nt}{4}\right)$.

For which values of k does resonance occur?

Problem 6. (3 points) Find a minimum value for the radius of convergence of a power series solution to

$$(x^2+1)y'' = \frac{y}{x+1}$$
 at $x=2$

Problem 7. (2 points) Suppose that the matrix A satisfies $e^{Ax} = \begin{bmatrix} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{bmatrix}$.

(a)
$$\boldsymbol{y}' = A\boldsymbol{y}, \ \boldsymbol{y}(0) = \begin{bmatrix} 1\\1 \end{bmatrix}$$
 is solved by $\boldsymbol{y}(x) =$
(b) $A =$

Problem 8. (4 points) Find all eigenfunctions and eigenvalues of $y'' + \lambda y = 0$, y(0) = 0, y(2) = 0 in the case $\lambda > 0$.

Problem 9. (3 points) Let y(x) be the unique solution to the IVP $y'' = x + 3y^2$, y(0) = 2, y'(0) = 1. Determine the first several terms (up to x^3) in the power series of y(x). (extra scratch paper)