Please print your name:

No notes, calculators or tools of any kind are permitted. There are 32 points in total. You need to show work to receive full credit.

Good luck!

Problem 1. (5 points) Derive a recursive description of a power series solution y(x) of the DE $y'' = (3x^2 - 2)y$.

Solution. Let us spell out the power series for y, x^2y, y'' :

$$y(x) = \sum_{n=0}^{\infty} a_n x^n \quad x^2 y(x) = \sum_{n=0}^{\infty} a_n x^{n+2} = \sum_{n=2}^{\infty} a_{n-2} x^n \quad y''(x) = \sum_{n=2}^{\infty} n(n-1) a_n x^{n-2} = \sum_{n=0}^{\infty} (n+2)(n+1) a_{n+2} x^n$$

Hence, the DE becomes:

$$\sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^n = 3\sum_{n=2}^{\infty} a_{n-2}x^n - 2\sum_{n=0}^{\infty} a_nx^n.$$

We compare coefficients of x^n :

- n=0: $2a_2=-2a_0$, so that $a_2=-a_0$.
- n=1: $6a_3=-2a_1$, so that $a_3=-\frac{1}{3}a_1$.
- $n \ge 2$: $(n+2)(n+1)a_{n+2} = 3a_{n-2} 2a_n$ Equivalently, for $n \ge 4$, $a_n = -\frac{2}{n(n-1)}a_{n-2} + \frac{3}{n(n-1)}a_{n-4}$.

In conclusion, the power series $y(x) = \sum_{n=0}^{\infty} a_n x^n$ is recursively determined by

$$a_2 = -a_0$$
, $a_3 = -\frac{1}{3}a_1$, $a_n = -\frac{2}{n(n-1)}a_{n-2} + \frac{3}{n(n-1)}a_{n-4}$ for $n \ge 4$.

(The values a_0 and a_1 are the initial conditions.)

Problem 2. (3 points) Derive a recursive description of the power series for $y(x) = \frac{1}{1 - 3x + 2x^2}$

Solution. Write $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$1 = (1 - 3x + 2x^{2}) \sum_{n=0}^{\infty} a_{n}x^{n} = \sum_{n=0}^{\infty} a_{n}x^{n} - 3\sum_{n=0}^{\infty} a_{n}x^{n+1} + 2\sum_{n=0}^{\infty} a_{n}x^{n+2}$$
$$= \sum_{n=0}^{\infty} a_{n}x^{n} - 3\sum_{n=1}^{\infty} a_{n-1}x^{n} + 2\sum_{n=2}^{\infty} a_{n-2}x^{n}.$$

We compare coefficients of x^n :

- n = 0: $1 = a_0$.
- n=1: $0=a_1-3a_0$, so that $a_1=3a_0=3$.
- $n \ge 2$: $0 = a_n 3a_{n-1} + 2a_{n-2}$ or, equivalently, $a_n = 3a_{n-1} 2a_{n-2}$.

In conclusion, the power series $\frac{1}{1-3x+2x^2} = \sum_{n=0}^{\infty} a_n x^n$ is recursively determined by

$$a_0 = 1$$
, $a_1 = 3$, $a_n = 3a_{n-1} - 2a_{n-2}$ for $n \ge 2$.

Problem 3. (4 points) Consider the function f(t) = t, defined for $t \in [0, 1]$.

(a) Sketch the Fourier series of f(t) for $t \in [-3, 3]$.

(b) Sketch the Fourier cosine series of f(t) for $t \in [-3, 3]$.

(c) Sketch the Fourier sine series of f(t) for $t \in [-3, 3]$.

In each sketch, carefully mark the values of the Fourier series at discontinuities.

Solution.

Problem 4. (5 points)

(a) Suppose $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$. How can we compute the a_n from y(x)? $a_n =$

(b) Suppose $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{3}\right) + b_n \sin\left(\frac{n\pi t}{3}\right) \right)$. How can we compute the a_n and b_n from f(t)?

- (c) Determine the power series around x = 0: $e^{7x} =$
- (d) Determine the power series around x = 0: $\frac{1}{1+x^2} =$

Solution.

(a)
$$a_n = \frac{y^{(n)}(x_0)}{n!}$$

(b) The Fourier coefficients a_n , b_n can be computed as

$$a_n = \frac{1}{3} \int_{-3}^{3} f(t) \cos\left(\frac{n\pi t}{3}\right) dt, \qquad b_n = \frac{1}{3} \int_{-3}^{3} f(t) \sin\left(\frac{n\pi t}{3}\right) dt.$$

(c) Since
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
, we have $e^{7x} = \sum_{n=0}^{\infty} \frac{7^n x^n}{n!}$.

(d) Since
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
, we have $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n}$.

Problem 5. (3 points) A mass-spring system is described by the equation $y'' + ky = \sum_{n=1}^{\infty} \frac{1}{n^2 + 7} \cos\left(\frac{nt}{4}\right)$.

For which values of k does resonance occur?

Solution. The roots of $p(D) = D^2 + k$ are $\pm i\sqrt{k}$, so that that the natural frequency is \sqrt{k} . Resonance therefore occurs if $\sqrt{k} = n/4$ for some $n \in \{1, 2, 3, ...\}$. Equivalently, resonance occurs if $k = n^2/16$ for some $n \in \{1, 2, 3, ...\}$.

Problem 6. (3 points) Find a minimum value for the radius of convergence of a power series solution to

$$(x^2+1)y'' = \frac{y}{x+1}$$
 at $x=2$.

Solution. Rewriting the DE as $y'' - \frac{1}{(x+1)(x^2+1)}y = 0$, we see that the singular points are $x = \pm i, -1$.

Note that x=2 is an ordinary point of the DE and that the distance to the nearest singular point is $|2-(\pm i)| = \sqrt{2^2+1^2} = \sqrt{5}$ (the distance to -1 is $|2-(-1)| = 3 = \sqrt{9} > \sqrt{5}$).

Hence, the DE has power series solutions about x=2 with radius of convergence at least $\sqrt{5}$.

Problem 7. (2 points) Suppose that the matrix A satisfies $e^{Ax} = \begin{bmatrix} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{bmatrix}$.

- (a) $\mathbf{y'} = A\mathbf{y}$, $\mathbf{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is solved by $\mathbf{y}(x) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
- (b) A=

Solution.

- (a) $\boldsymbol{y}(x) = e^{Ax} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3e^x + 4e^{2x} \\ -e^x + 2e^{2x} \end{bmatrix}$
- (b) Like any fundamental matrix, $\Phi = e^{Ax}$ satisfies $\frac{d}{dx}e^{Ax} = Ae^{Ax}$.

Hence, $A = \begin{bmatrix} \frac{d}{dx} e^{Ax} \end{bmatrix}_{x=0} = \begin{bmatrix} 3e^x - 4e^{2x} & -6e^x + 12e^{2x} \\ e^x - 2e^{2x} & -2e^x + 6e^{2x} \end{bmatrix}_{x=0} = \begin{bmatrix} -1 & 6 \\ -1 & 4 \end{bmatrix}.$

Problem 8. (4 points) Find all eigenfunctions and eigenvalues of $y'' + \lambda y = 0$, y(0) = 0, y(2) = 0 in the case $\lambda > 0$.

Solution. Write $\lambda = \rho^2$. Then $y(x) = A\cos(\rho x) + B\sin(\rho x)$. $y(0) = A \stackrel{!}{=} 0$. Using this, $y(2) = B\sin(2\rho) \stackrel{!}{=} 0$. Since $B \neq 0$ for eigenfunctions, we need $\sin(2\rho) = 0$. This happens if $2\rho = n\pi$ for an integer n.

Consequently, we find the eigenvalues $\lambda = \left(\frac{n\pi}{2}\right)^2$, where n = 1, 2, 3, ... (we exclude n = 0 because $\rho > 0$), with corresponding eigenfunctions $y(x) = \sin\frac{n\pi x}{2}$.

Problem 9. (3 points) Let y(x) be the unique solution to the IVP $y'' = x + 3y^2$, y(0) = 2, y'(0) = 1.

Determine the first several terms (up to x^3) in the power series of y(x).

Solution. (successive differentiation) From the DE, $y''(0) = 0 + 3y(0)^2 = 12$.

Differentiating both sides of the DE, we obtain y''' = 1 + 6yy'. In particular, $y'''(0) = 1 + 6 \cdot 2 \cdot 1 = 13$.

Hence,
$$y(x) = y(0) + y'(0)x + \frac{1}{2}y''(0)x^2 + \frac{1}{6}y'''(0)x^3 + \dots = 2 + x + 6x^2 + \frac{13}{6}x^3 + \dots$$

Solution. (plug in power series) Taking into account the initial conditions, $y = 2 + x + a_2x^2 + a_3x^3 + \dots$

Therefore, $y'' = 2a_2 + 6a_3x + ...$

On the other hand, $y^2 = 4 + 4x + ...$

Equating coefficients of y'' and $x + 3y^2$, we find $2a_2 = 12$, $6a_3 = 1 + 3 \cdot 4 = 13$.

So
$$a_2 = 6$$
, $a_3 = \frac{13}{6}$ and, hence, $y(x) = 2 + x + 6x^2 + \frac{13}{6}x^3 + \dots$

(extra scratch paper)