
Sketch of Lecture 24 Tue, 11/26/2019

Example 135. Find the unique solution u(x; y) to:
uxx+ uyy=0 (PDE)
u(x; 0) = 0
u(x; 2) = 3
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations:
Let v(x; y)=u(x; 2¡ y). Then vxx+ vyy=0, v(x; 0)=3, v(x; 2)= 0, v(0; y)= 0, v(1; y) = 0.
Hence, it follows from the previous example that

v(x; y) = 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e
�ny¡ e¡�n(y¡4)):

Consequently,

u(x; y) = v(x; 2¡ y) = 3
X
n=1
n odd

1
4
�n

1

1¡ e4�n sin(�nx)(e
�n(2¡y)¡ e�n(2+y)):

Example 136. Find the unique solution u(x; y) to:

uxx+uyy = 0
u(x; 0)=2; u(x; 2)=3
u(0; y)= 0; u(1; y)= 0

Solution. Note that u(x; y) is a combination of the solutions to the previous two
examples!

u(x; y)=
X
n=1
n odd

1
4
�n

sin(�nx)
1¡ e4�n [2(e

�ny¡e¡�n(y¡4))+3(e�n(2¡y)¡e�n(2+y))]:
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(Just for fun!) � is the perimeter of a circle enclosed in a square with
edge length 1. The perimeter of the square is 4, which approximates
�. To get a better approximation, we �fold� the vertices of the square
towards the circle (and get the blue polygon). This construction can
be repeated for even better approximations and, in the limit, our shape
will converge to the true circle. At each step, the perimeter is 4, so we
conclude that �=4, contrary to popular belief.

Can you pin-point the fallacy in this argument?

The solution is below!

(�=4, solution)
We are constructing curves cn with the property that cn! c where c is the circle. This convergence can be
understood, for instance, in the same sense kcn ¡ ck ! 0 with the norm measuring the maximum distance
between the two curves.
Since cn! c we then wanted to conclude that perimeter(cn)!perimeter(c), leading to 4!�.
However, in order to conclude from xn! x that f(xn)! f(x) we need that f is continuous (at x)!!
The �function� perimeter, however, is not continuous. In words, this means that (as we see in this example)
curves can be arbitrarily close, yet have very di�erent arc length.
We can dig a little deeper: as you learned in Calculus II, the arc length of a function y= fn(x) for x2 [a; b] isZ

a

b

(dx)2+(dy)2
q

=

Z
a

b

1+ fn
0 (x)2

q
dx:

Observe that this involves fn0 (x). Try to see why the operator D that sends f to f 0 is not continuous with
respect to the distance induced by the norm

kf k=
�Z

a

b

f(x)2dx

�1/2
:

In words, two functions f and g can be arbitrarily close, yet have very di�erent derivatives f 0 and g 0.
That's a huge issue in functional analysis, which is the generalization of linear algebra to in�nite dimensional
spaces (like the space of all di�erentiable functions). The linear operators (�matrices�) on these spaces frequently
fail to be continuous.
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