
Sketch of Lecture 1 Tue, 8/20/2019

Review: Examples of di�erential equations we can solve

Let's start with one of the simplest (and most fundamental) di�erential equation (DE). It is �rst-
order (only a �rst derivative) and linear (with constant coe�cients).

Example 1. Solve y 0=3y.

Solution. y(x)=Ce3x

Check. Indeed, if y(x)=Ce3x, then y 0(x)= 3Ce3x=3y(x).
Comment. Recall we can always easily check whether a function solves a di�erential equation. This means that
(although you might be unfamiliar with the techniques for solving) you can use computer algebra systems like
Sage to solve di�erential equations without trust issues.

To describe a unique solution, additional constraints need to be imposed.

Example 2. Solve the initial value problem (IVP) y 0=3y, y(0)= 5.

Solution. This has the unique solution y(x)= 5e3x.

The following is a non-linear di�erential equation. In general, such equations are much more
complicated than linear ones. We can solve this particular one because it is separable.

Example 3. Solve y 0=xy2.

Solution. This DE is separable: 1

y2
dy=xdx. Integrating, we �nd ¡1

y
=
1

2
x2+C.

Hence, y=¡ 1
1

2
x2+C

=
2

D¡x2 .

[Here, D=¡2C but that relationship doesn't matter; it only matters that the solution has a free parameter.]
Note. Note that we did not �nd the solution y=0 (lost when dividing by y2). It is called a singular solution
because it is not part of the general solution (the one-parameter family found above).
Check. Compute y 0 and verify that the DE is indeed satis�ed.

Excursion: Euler's identity

Theorem 4. (Euler's identity) ei�= cos(�)+ i sin(�)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)=1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the �ve
fundamental constants).
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Example 5. Where do trig identities like sin(2x) = 2cos(x)sin(x) or sin2(x) = 1¡ cos(2x)
2

(and
in�nitely many others you have never heard of!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x) + i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stu� with an i�), we conclude that sin(2x) = 2cos(x)sin(x).
Likewise, comparing real parts, we read o� cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you �nd a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= ::: (that's what
we actually did in class).

Realize that the complex number ei�=cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x= r cos� and y= r sin�), we can write

z=x+ iy= r cos�+ ir sin�= rei�:

In the �nal step, we used Euler's identity.
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