**Example 112.** The motion of a mass on a spring under an external force is described by  $my'' + 4y = 3\cos(t) - \cos(2t) + 7\cos(3t)$ . For which values of m > 0 does resonance occur?

**Solution.** The characteristic roots of the homogeneous DE are  $\pm i\sqrt{\frac{4}{m}}$  so that the natural frequency is  $\sqrt{\frac{4}{m}}$ . The external frequencies are  $\lambda=1,2,3$ . Hence, resonance occurs when  $\sqrt{\frac{4}{m}}=\lambda$  for  $\lambda\in\{1,2,3\}$ . This is equivalent to  $m=\frac{4}{\lambda^2}$  so that this happens if m=4, m=1,  $m=\frac{4}{9}$ .

**Comment.** The external force  $3\cos(t) - \cos(2t) + 7\cos(3t)$  may look artifical. However, that is not the case! Indeed, essentially any  $2\pi$ -periodic function can be written as an (infinite) combination of such cosine and sine terms. The resulting series are known as **Fourier series**.

## External forces plus damping

In the presence of both damping (d>0) and a periodic external force (f(t)), the motion y(t) of a mass on a spring is described by the DE

$$my'' + dy' + ky = f(t).$$

Solving the DE, we find that y(t) splits into transient motion  $y_{\rm tr}$  (with  $y_{\rm tr}(t) \to 0$  as  $t \to \infty$ ) and steady periodic oscillations  $y_{\rm sp}$ :

$$y(t) = y_{\rm tr} + y_{\rm sp}$$
.

The following example spells this out.

**Comment.** Note that  $y_{\rm sp}$  will correspond to the simplest particular solution, while  $y_{\rm tr}$  corresponds to the solution of the corresponding homogeneous system (where we have no external force).

**Example 113.** A forced mechanical oscillator is described by  $2y'' + 2y' + y = 10\sin(t)$ . As  $t \to \infty$ , what are the period and the amplitude of the resulting steady periodic oscillations?

**Solution**. The characteristic roots of the homogeneous DE are  $\frac{1}{4}(-2\pm\sqrt{4-8})=-\frac{1}{2}\pm\frac{1}{2}i$ . Accordingly, the system without external force is underdamped (because of the  $\pm i/2$  the solutions will involve oscillations).

The characteristic roots for the inhomogeneous part are  $\pm i$  so that there must be a particular solution  $y_p = A\cos(t) + B\sin(t)$  with coefficients A,B that we need to determine by plugging into the DE. This results in A=-4 and B=-2 (do it!).

Hence, the general solution is 
$$y(t) = \underbrace{-4 \mathrm{cos}(t) - 2 \mathrm{sin}(t)}_{y_{\mathrm{sp}}} + \underbrace{e^{-t/2} \Big( C_1 \mathrm{cos}\Big(\frac{t}{2}\Big) + C_2 \mathrm{sin}\Big(\frac{t}{2}\Big) \Big)}_{y_{\mathrm{tr}} \to 0 \text{ as } t \to \infty}$$

The period of  $y_{\rm sp}=-4\cos(t)-2\sin(t)$  is  $2\pi$  and the amplitude is  $\sqrt{(-4)^2+(-2)^2}=\sqrt{20}$ .

**Comment.** Using the polar coordinates  $(-4,-2) = \sqrt{20}(\cos\alpha,\sin\alpha)$  where  $\alpha = \tan^{-1}(1/2) + \pi \approx 3.605$ , we can alternatively express the steady periodic oscillations as  $y_{\rm sp} = -4\cos(t) - 2\sin(t) = \sqrt{20}(\cos(t-\alpha))$ .

**Example 114.** A forced mechanical oscillator is described by  $y'' + 5y' + 6y = 2\cos(3t)$ . What are the (circular) frequency and the amplitude of the resulting steady periodic oscillations?

**Solution.** The characteristic roots of the homogeneous DE are -2, -3. Accordingly, the system without external force is overdamped (the solutions will not involve oscillations).

The characteristic roots for the inhomogeneous part are  $\pm 3i$  so that there must be a particular solution  $y_p = A\cos(3t) + B\sin(3t)$  with coefficients A,B that we need to determine by plugging into the DE. To do so, we compute  $y_p' = -3A\sin(3t) + 3B\cos(3t)$  as well as  $y_p'' = -9A\cos(3t) - 9B\sin(3t)$ .

$$y_p'' + 5y_p' + 6y_p = (-9A\cos(3t) - 9B\sin(3t)) + 5(-3A\sin(3t) + 3B\cos(3t)) + 6(A\cos(3t) + B\sin(3t))$$

$$= (-9A + 15B + 6A)\cos(3t) + (-9B - 15A + 6B)\sin(3t)$$

$$\stackrel{!}{=} 2\cos(3t)$$

This results in the two equations -3A+15B=2 and -3B-15A=0, which we solve to find  $A=-\frac{1}{39}$  and  $B=\frac{5}{39}$ .

The general solution is  $y(t) = \underbrace{-\frac{1}{39}\mathrm{cos}(3t) + \frac{5}{39}\mathrm{sin}(3t)}_{y_{\mathrm{sp}}} + \underbrace{C_1e^{-2t} + C_2e^{-3t}}_{y_{\mathrm{tr}} \to 0 \text{ as } t \to \infty}.$ 

The frequency of  $y_{\rm sp}=-\frac{1}{39}{\rm cos}(3t)+\frac{5}{39}{\rm sin}(3t)$  is 3 and the amplitude is  $\sqrt{\left(-\frac{1}{39}\right)^2+\left(\frac{5}{39}\right)^2}=\sqrt{\frac{2}{117}}$ .

**Example 115.** Find the steady periodic solution to  $y'' + 2y' + 5y = \cos(\lambda t)$ . What is the amplitude of the steady periodic oscillations? For which  $\lambda$  is the amplitude maximal?

**Solution**. The characteristic roots of the homogeneous DE are  $-1 \pm 2i$ .

[Not really needed, because positive damping prevents duplication; can you see it?]

Hence,  $y_{\rm sp}=A\cos(\lambda t)+B\sin(\lambda t)$  and to find A,B we need to plug into the DE.

Doing so, we find 
$$A=\frac{5-\lambda^2}{(5-\lambda^2)^2+4\lambda^2},\ B=\frac{2\lambda}{(5-\lambda^2)^2+4\lambda^2}.$$

Thus, the amplitude of 
$$y_{\rm sp}$$
 is  $r(\lambda)=\sqrt{A^2+B^2}=\frac{1}{\sqrt{(5-\lambda^2)^2+4\lambda^2}}.$ 

The function  $r(\lambda)$  is sketched to the right. It has a maximum at  $\lambda = \sqrt{3}$  at which the amplitude is unusually large (well, here it is not very pronounced). We say that **practical resonance** occurs for  $\lambda = \sqrt{3}$ .

[For comparison, without damping, (pure) resonance occurs for  $\lambda = \sqrt{5}$ .]

