Notes for Lecture 22 Fri, 3/21/2025

Review. Underdamped, overdamped, critically damped for the DE " + dy’ + cy =0.

The critically damped case is when the damping is just large enough to avoid oscillations (under-
damped case). If damping is increased further (overdamped case), then this typically means that
it “takes longer” for the solution to approach equilibrium.

Challenge. Try to make this last comment more precise! For that, focus on the exponential term in the

corresponding general solution that decays the slowest. That slowest term decays fastest in the critically damped
case.

The same DE describes the current in an RLC circuit (disconnected from its source).

| Application: motion of a pendulum

Example 105. Show that the motion of an ideal pendulum is described by
LO" + gsin(9) =0,

where 0 is the angular displacement and L is the length of the pendulum.

And, as usual, g is acceleration due to gravity.

For short times and small angles, this motion is approximately described by

LO" + g6 =0.

This is because, if 0 is small, then sin(0) ~ . For instance, for § = 15° the error
0 — sinf is about 1%.

Solution. (Newton’s second law) The tangential component of the gravitational force is F' = —sinf - mg.
Combining this with Newton's second law, according to which F=ma=mL0" (note that a = s’ where s = L0),
we obtain the claimed DE.

Solution. (conservation of energy) Alternatively, we can use conservation of energy to derive the DE. Again,
we assume the string to be massless, and let m be the swinging mass. Let s and h be as in the sketch above.

The velocity (more accurately, the speed) of the mass is v = % = %.
. . . 1 2 1 of d6 2
Its kinetic energy therefore is T = Smv= EmL ) -

On the other hand, the potential energy is V =mgh=mgL(1 — cosf) (weight mg times height h).
By the principle of conservation of energy, the sum of these is constant: 7'+ V = const

. . - . 1 de d26
Taking the time derivative, this becomes Sm L? 2y ae

+mgL sinf % =0. Cancelling terms, we obtain the DE.

Example 106. The motion of a pendulum is described by 6" + 90 =0, 6(0) =1/4, 6’(0) = 0.
What is the period and the amplitude of the resulting oscillations?

Solution. The roots of the characteristic polynomial are +3i. inl
Hence, 0(t) = A cos(3t) + Bsin(3t). 6(0)=A=1/4. 6'(0)=3B=0. °
Therefore, the solution is 0(t) =1 /4 cos(3t). \
Hence, the period is 27 /3 and the amplitude is 1 /4. ‘ 2n 5\‘/
x T T = =N\
Comment. The initial angle 1 /4 is about 14.3°. 6 = 2 36
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Example 107. The motion of a pendulum is described by #” + 96 =0, 6(0)=1/4, 6’(0) = —%
(“initial kick). What is the period and the amplitude of the resulting oscillations?
Solution. This time, 0(0)=A=1/4. §/(0)=3B=-3/2.
Therefore, the solution is 6(¢) = % cos(3t) — % sin(3t).
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Hence, the period is 27 /3 and the amplitude is
0.559.
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Comment. Using polar coordinates, we get 0(t) =~,~cos(3t — a) with
phase angle o = tan—!(—2) + 27 ~ 5.176.

\ Adding external forces and the phenomenon of resonance \

The motion of a mass m on a spring, with damping and with an external force f(t) taken into
account, can be modeled by the DE

my” +dy'+ky= f(t).

Note that each term is representing a force: my’’ =ma is the force due to Newton's second law (F =ma), the
term dy’ models damping (proportional to the velocity), the term ky represents the force due to Hooke's law,
and the term f(t) represents an external force that acts on the mass at time ¢.

Example 108. Describe the solutions of y” + 4y =cos(At). (Here, A >0 is a constant.)

Solution. The characteristic roots of the homogeneous DE are £2i so that 2 is the natural frequency (the
frequency at which the system would oscillate in the absence of external forces; mathematically, this reflects
the fact that the general solution to the corresponding homogeneous DE is A cos(2t) + B sin(2t), which has
frequency w = 2).

The characteristic roots of the inhomogeneous part are £\i where X is the external frequency.

Case 1: A # 2. Then there is a particular solution of the form y, = A cos(At) + B sin(At). To determine
the unique values of A, B, we plug into the DE:

yy + 4yp = (4 — X2) A cos(At) + (4 — A?) Bsin(At) = cos(At)

We conclude that (4 — A?)A =1 and (4 — A\?) B=0. Solving these, we find A=1/(4 — \?) and B =0.

Thus, the general solution is of the form y = _1/\2 cos(At) + Cicos(2t) + Casin(2t).

4

Case 2: A =2. Now, there is a particular solution of the form y, = At cos(2t) + Bt sin(2t). To determine
the unique values of A, B, we again plug into the DE (which is more work this time):

7 work . !
Yp +4yp = 4B cos(2t) —4Asin(2t) = cos(2t)

We conclude that 4B =1 and —4A =0. Solving these, we find A=0and B=1/4.
Thus, the general solution is of the form y = %t sin(2t) + Cicos(2t) + Casin(2t).

Note that the amplitude in y,, increases without bound (so that the same is true for the general solution).

This phenomenon is called resonance; it occurs if an external frequency matches a natural frequency.
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If an external frequency matches a natural frequency, then resonance occurs.

In that case, we obtain amplitudes that grow without bound (as illustrated in Example 108).

Resonance (or anything close to it) is very important for practical purposes because large amplitudes can be very
destructive: singing to shatter glass, earth quake waves and buildings, marching soldiers on bridges, ...

Comment. Mathematically speaking, resonance occurs if the characteristic roots of the homogeneous DE and the
inhomogeneous part overlap. In that case, the solutions acquire a factor of the variable ¢ (or ) which changes
the nature of the solutions (and results in unbounded amplitudes).

Example 109. Consider y” + 9y =10cos(2At). For what value of \ does resonance occur?

Solution. The natural frequency is 3. The external frequency is 2A. Hence, resonance occurs when )\:%
Example 110. The motion of a mass on a spring under an external force is described by 5y” +
2y = —2sin(3\t). For which value of A does resonance occur?

. . 2 . 1 /2
Solution. The natural frequency is \/; The external frequency is 3. Hence, resonance occurs when )‘25 =

Example 111. The motion of a mass on a spring under an external force is described by 3y” +
ky=cos(t/2). For which value of k>0 does resonance occur?

Solution. The natural frequency is \/g The external frequency is % Hence, resonance occurs when \/E:%
2

This happens if k=3 (%) :%
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