Review. A homogeneous linear DE with constant coefficients is of the form p(D)y=0, where p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k, we get the k solutions x^je^{rx} for j=0,1,...,k-1.

Example 77. (review) Find the general solution of y''' + 2y'' + y' = 0.

Solution. The characteristic polynomial $p(D) = D(D+1)^2$ has roots 0, 1, 1.

Hence, the general solution is $A + (B + Cx)e^x$.

Example 78. Determine the general solution of y''' - 3y'' + 3y' - y = 0.

Solution. The characteristic polynomial $p(D) = D^3 - 3D^2 + 3D - 1 = (D-1)^3$ has roots 1, 1, 1.

By Theorem 74, the general solution is $y(x) = (C_1 + C_2x + C_3x^2)e^x$.

Comment. The coefficients 1, 2, 1 and 1, 3, 3, 1 in $(D+1)^2$ and $(D+1)^3$ are known as binomial coefficients. They can be arranged as rows in Pascal's triangle where the next row would be 1, 4, 6, 4, 1.

Example 79. Determine the general solution of y''' - y'' - 5y' - 3y = 0.

Solution. The characteristic polynomial $p(D) = D^3 - D^2 - 5D - 3 = (D-3)(D+1)^2$ has roots 3, -1, -1. Hence, the general solution is $y(x) = C_1 e^{3x} + (C_2 + C_3 x)e^{-x}$.

Example 80. Determine the general solution of $y^{(6)} = 3y^{(5)} - 4y'''$.

Solution. This DE is of the form p(D) y=0 with $p(D)=D^6-3D^5+4D^3=D^3(D-2)^2(D+1)$.

The characteristic roots are 2, 2, 0, 0, 0, -1.

By Theorem 74, the general solution is $y(x) = (C_1 + C_2 x)e^{2x} + C_3 + C_4 x + C_5 x^2 + C_6 e^{-x}$.

Example 81. Consider the function $y(x) = 3xe^{-2x} + 7e^x$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include -2,-2,1.

The simplest choice for p(D) thus is $p(D) = (D+2)^2(D-1)$.

Note. For many purposes it is best to leave the DE as $(D+2)^2(D-1)y=0$. On the other hand, if we wanted to, we could multiply out $(D+2)^2(D-1)=D^3+3D^2-4$ to write the DE in the more classical form y'''+3y''-4y=0.

Example 82. Consider the function $y(x) = 3xe^{-2x} + 7$. Determine a homogeneous linear DE with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include -2,-2,0.

The simplest choice for p(D) thus is $p(D) = (D+2)^2D$.

Note. Optionally, we can expand $(D+2)^2D=D^3+4D^2+4D$ to write the DE as y'''+4y''+4y'=0.

Real form of complex solutions

Let's recall some basic facts about complex numbers:

- Every complex number can be written as z = x + iy with real x, y.
- Here, the imaginary unit *i* is characterized by solving $x^2 = -1$.

Important observation. The same equation is solved by -i. This means that, algebraically, we cannot distinguish between +i and -i.

• The **conjugate** of z = x + iy is $\bar{z} = x - iy$.

Important comment. Since we cannot algebraically distinguish between $\pm i$, we also cannot distinguish between z and \bar{z} . That's the reason why, in problems involving only real numbers, if a complex number z=x+iy shows up, then its **conjugate** $\bar{z}=x-iy$ has to show up in the same manner. With that in mind, have another look at the examples below.

• The **real part** of z = x + iy is x and we write Re(z) = x.

Likewise the **imaginary part** is Im(z) = y.

Observe that $\mathrm{Re}(z)=\frac{1}{2}(z+\bar{z})$ as well as $\mathrm{Im}(z)=\frac{1}{2i}(z-\bar{z}).$

Theorem 83. (Euler's identity) $e^{ix} = \cos(x) + i\sin(x)$

Proof. Observe that both sides are the (unique) solution to the IVP y' = iy, y(0) = 1.

[Check that by computing the derivatives and verifying the initial condition! As we did in class.] \Box

On lots of T-shirts. In particular, with $x=\pi$, we get $e^{\pi i}=-1$ or $e^{i\pi}+1=0$ (which connects the five fundamental constants).

Comment. It follows that $\cos(x) = \operatorname{Re}(e^{ix}) = \frac{1}{2}(e^{ix} + e^{-ix})$ and $\sin(x) = \operatorname{Im}(e^{ix}) = \frac{1}{2i}(e^{ix} - e^{-ix})$.

Example 84. Determine the general solution of y'' + y = 0.

Solution. (complex numbers in general solution) The characteristic polynomial is $D^2 + 1$ which has no roots over the reals. Over the complex numbers, by definition, the roots are i and -i.

So the general solution is $y(x) = C_1 e^{ix} + C_2 e^{-ix}$.

Solution. (real general solution) On the other hand, we easily check that $y_1 = \cos(x)$ and $y_2 = \sin(x)$ are two solutions. Hence, the general solution can also be written as $y(x) = D_1 \cos(x) + D_2 \sin(x)$.

Important comment. That we have these two different representations is a consequence of Euler's identity (Theorem 83) by which $e^{\pm ix} = \cos(x) \pm i \sin(x)$.

On the other hand, $\cos(x)=\frac{1}{2}(e^{ix}+e^{-ix})$ and $\sin(x)=\frac{1}{2i}(e^{ix}-e^{-ix}).$

[Recall that the first formula is an instance of $\text{Re}(z) = \frac{1}{2}(z+\bar{z})$ and the second of $\text{Im}(z) = \frac{1}{2i}(z-\bar{z})$.]

Example 85. Determine the general solution of y'' - 4y' + 13y = 0 using only real numbers.

Solution. The characteristic polynomial $p(D) = D^2 - 4D + 13$ has roots 2 + 3i, 2 - 3i.

[We can use the quadratic formula to find these roots as $\frac{4\pm\sqrt{4^2-4\cdot13}}{2}=\frac{4\pm\sqrt{-36}}{2}=\frac{4\pm6i}{2}=2\pm3i$.]

Hence, the general solution in real form is $y(x) = C_1 e^{2x} \cos(3x) + C_2 e^{2x} \sin(3x)$.

Note. $e^{(2\pm 3i)x} = e^{2x}e^{\pm 3ix} = e^{2x}(\cos(3x) \pm i\sin(3x))$

Review. A linear DE of order n is of the form

$$y^{(n)} + P_{n-1}(x) y^{(n-1)} + \dots + P_1(x)y' + P_0(x)y = f(x).$$

The general solution of linear DE always takes the form

$$y(x) = y_p(x) + C_1 y_1(x) + \dots + C_n y_n(x),$$

where y_p is any solution (called a particular solution) and $y_1, y_2, ..., y_n$ are solutions to the corresponding homogeneous linear DE.

- In terms of $D = \frac{\mathrm{d}}{\mathrm{d}x}$, the DE becomes: Ly = f(x) with $L = D^n + P_{n-1}(x)D^{n-1} + \dots + P_1(x)D + P_0(x)$.
- The inclusion of the f(x) term makes Ly = f(x) an inhomogeneous linear DE. The corresponding **homogeneous** DE is Ly=0 (note that the zero function y(x)=0 is a solution of Ly=0).
- L is called a linear differential operator.
 - $\circ L(C_1y_1 + C_1y_2) = C_1Ly_1 + C_2Ly_2$ (linearity) **Comment.** If you are familiar with linear algebra, think of L replaced with a matrix A and y_1, y_2 replaced with vectors v_1, v_2 . In that case, the same linearity property holds.
 - So, if y_1 solves Ly = f(x), and y_2 solves Ly = g(x), then $C_1y_1 + C_2y_2$ solves the differential equation $Ly = C_1f(x) + C_2g(x)$.
 - In particular, if y_1 and y_2 solve the homogeneous DE (then f(x) = 0 and g(x) = 0), then so does any linear combination $C_1y_1 + C_2y_2$. This explains why, for any homogeneous linear DE of order n, there are n solutions $y_1, y_2, ..., y_n$ such that the general solution is y(x) = $C_1y_1(x) + ... + C_n y_n(x)$. Moreover, in that case, if we have a particular solution y_p of the inhomogeneous DE Ly = f(x), then $y_p + C_1y_1 + ... + C_ny_n$ is the general solution of Ly = f(x).

Example 86. (preview) Determine the general solution of y'' + 4y = 12x. Hint: 3x is a solution.

Solution. Here, $p(D) = D^2 + 4$. Because of the hint, we know that a particular solution is $y_p = 3x$.

The homogeneous DE p(D)y = 0 has solutions $y_1 = \cos(2x)$ and $y_2 = \sin(2x)$. [Make sure this is clear!] Therefore, the general solution to the original DE is $y_p + C_1 y_1 + C_2 y_2 = 3x + C_1 \cos(2x) + C_2 \sin(2x)$.

Just to make sure. The DE in operator notation is Ly = f(x) with $L = D^2 + 4$ and f(x) = 12x. **Next.** How to find the particular solution $y_p = 3x$ ourselves.

42