
Sketch of Lecture 49 Tue, 04/29/2014

Review. Eigenvalues and eigenfunctions of y ′′+ λy=0, y(0)= 0, y(L)= 0. ♦
Example 186. Suppose that a rod of length L is compressed by a force P . We model the
shape of the rod by a function y(x) on the interval [0, L]. The theory of elasticity predicts that,
under some simplifying assumptions, y should satisfy EIy ′′+Py=0, y(0)= 0, y(L)= 0.

Here, EI is a constant modeling the inflexibility of the rod (E, known as Young’s modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, y ′′+λy=0, y(0)=0, y(L)=0, with λ=
P

EI
. The fact that there is no nonzero

solution unless λ =
( πn

L

)

2 for some n = 1, 2, 3, 	 , means that buckling can only occur if

P =
( πn

L

)

2EI. In particular, no buckling occurs for forces less than
π2EI

L2 . This is known as the

critical load (or Euler load) of the rod. ♦

The heat equation

We wish to describe one-dimensional heat flow33. Let u(x, t) describe the temperature at time
t at position x. If we model a heated rod of length L, then x∈ [0, L].

Note that u(x, t) depends on two variables. When taking derivatives, we will use the notations ut =
∂

∂t
u and

uxx=
∂2

∂t2
u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect. Make
a sketch of some temperature profile u(x, t) for fixed t. Then as t increases, we expect maxima
(where uxx < 0) of that profile to flatten out (so ut < 0); similarly, minima (where uxx > 0)
should go up (so ut>0). The simplest relationship between ut and uxx which conforms with our
expectation is ut= kuxx, with k > 0. That’s the heat equation.

Note that the heat equation is a linear and homogeneous partial differential equation.

In particular, the principle of superposition holds: if u1 and u2 solve the heat equation, then so does c1u1+ c2u2.

Remark 187. In higher dimensions, the heat equation takes the form ut = k(uxx + uyy) or
ut= k(uxx+uyy+uzz). Note that ∆u= uxx+uyy+uzz is the Laplace operator34. ♦
Example 188. Note that u(x, t)= ax+ b solves the heat equation. ♦

Let us think about what is needed to describe a unique solution of the heat equation.

Initial condition at t=0: u(x, 0)= f(x) [temperature distribution at time t=0]
Boundary condition at x=0 and x=L: [heat only enters/exits at boundary]
for instance, u(0, t)= u(L, t)= 0 [by adding ax+ b to u this covers any constant boundary values]
[another option are boundary conditions like ux(0, t)=ux(L, t) = 0, which would model insulated ends]

Example 189. To get a feeling, let us find some other solutions to ut=uxx (for starters, k=1).

For instance, u(x, t)= etex is a solution. Not a very interesting one for modeling heat flow because it increases
exponentially in time.
More interesting are u(x, t)=e−tcos(x) and u(x, t)= e−tsin(x). More generally, e−n2tcos(nx) and e−n2tsin(nx)
are solutions. This actually reveals a strategy for solving the heat equation with conditions such as ut = uxx,
u(0, t)= 0, u(L, t) = 0, u(x, 0)= f(x).

Namely, the solutions un(x, t) = e−n2tsin(nx) all satisfy u(0, t) = 0, u(π, t) = 0. On the other hand, un(x,

0)= sin (nx). To find u(x,t) such that u(x,0)= f(x), we thus only need to write f(x) as a Fourier (sine) series. ♦

33. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in
probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

34. The Laplacian ∆u is also often written as ∆u=∇2u. The operator ∇=(∂/∂x, ∂/∂y) is pronounced “nabla”
(Greek for a certain harp) or “del” (Persian for heart), and ∇2 is short for the inner product ∇ ·∇.
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