Sketch of Lecture 49 Tue, 04/29/2014

Review. Eigenvalues and eigenfunctions of y” + A\y=0, y(0)=0, y(L)=0. o

Example 186. Suppose that a rod of length L is compressed by a force P. We model the
shape of the rod by a function y(z) on the interval [0, L]. The theory of elasticity predicts that,
under some simplifying assumptions, y should satisfy ETy"” + Py=0, y(0)=0, y(L)=0.

Here, ET is a constant modeling the inflexibility of the rod (E, known as Young’s modulus, depends on the
material, and I depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, y” + Ay =0, y(0) =0, y(L) =0, with A= %. The fact that there is no nonzero

solution unless A = (7T—Ln)2 for some n = 1, 2, 3, ..., means that buckling can only occur if
P= (%)QEI . In particular, no buckling occurs for forces less than W;EI. This is known as the
critical load (or Euler load) of the rod. o

The heat equation

We wish to describe one-dimensional heat flow33. Let u(x,t) describe the temperature at time
t at position x. If we model a heated rod of length L, then z € [0, L].

Note th%t u(z, t) depends on two variables. When taking derivatives, we will use the notations u; = %u and

Uy = %u for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect. Make
a sketch of some temperature profile u(x,t) for fixed ¢. Then as ¢ increases, we expect maxima
(where u;, < 0) of that profile to flatten out (so u; < 0); similarly, minima (where u,, > 0)
should go up (so u > 0). The simplest relationship between u; and u,, which conforms with our
expectation is us = ku, ., with k> 0. That’s the heat equation.

Note that the heat equation is a linear and homogeneous partial differential equation.

In particular, the principle of superposition holds: if u; and ug solve the heat equation, then so does ciuy + cous.

Remark 187. In higher dimensions, the heat equation takes the form w; = k(ugzq + uyy) or

Ut =k(Ugpq + Uyy +u..). Note that Au=ug,+ uyy+u, . is the Laplace operator34. O
Example 188. Note that u(x,t) =ax + b solves the heat equation. &
Let us think about what is needed to describe a unique solution of the heat equation.
Initial condition at t=0: u(z,0)= f(x) [temperature distribution at time ¢ =0]
Boundary condition at x=0 and z=L: [heat only enters/exits at boundary]
for instance, u(0,t) =u(L,t)=0 [by adding ax + b to u this covers any constant boundary values]

[another option are boundary conditions like ug(0,t) =uz(L,¢) =0, which would model insulated ends]

Example 189. To get a feeling, let us find some other solutions to u; = us, (for starters, k=1).

For instance, u(x,t) =ee® is a solution. Not a very interesting one for modeling heat flow because it increases
exponentially in time.

More interesting are u(z,t) = e~ tcos(z) and u(z,t) = e 'sin(x). More generally, e~ ""tcos(nz) and e~ ™ tsin(nz)
are solutions. This actually reveals a strategy for solving the heat equation with conditions such as u; = ug 4,
u(0,t) =0, u(L,t) =0, u(z,0) = f(z).

Namely, the solutions u,(z, t) = e~"’sin(nz) all satisfy u(0, t) = 0, u(r, t) = 0. On the other hand, wu,(z,
0) =sin (nz). To find u(zx,t) such that u(x,0)= f(x), we thus only need to write f(z) as a Fourier (sine) series. <

t

33. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in
probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

34. The Laplacian Awu is also often written as Au= V?2u. The operator V = (9/9z,d/dy) is pronounced “nabla”
(Greek for a certain harp) or “del” (Persian for heart), and V2 is short for the inner product V- V.
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