Sketch of Lecture 19

The qualitative effects of damping

Let us consider x'' + dx' + cx = 0 with c > 0 and $d \ge 0$. The term dx' models damping (e.g. friction, air resistance) proportional to the velocity x'.

The characteristic equation $r^2 + dr + c = 0$ has roots $\frac{-d \pm \sqrt{d^2 - 4c}}{2}$. The nature of the solutions depends on whether the discriminant $\Delta = d^2 - 4c$ is positive, negative, or zero.

Undamped. d = 0. In that case, $\Delta < 0$. Two complex roots $\pm i\omega$ with $\omega = \sqrt{c}$.

Solutions: $c_1 \cos(\omega t) + c_2 \sin(\omega t) = r \cos(\omega t - \alpha)$ where $(c_1, c_2) = r(\cos \alpha, \sin \alpha)$ Oscillations with frequency $\omega = \sqrt{c}$, period $\frac{2\pi}{\sqrt{c}}$, time lag $\frac{\alpha}{\sqrt{c}}$

Underdamped. d > 0, $\Delta < 0$. Two complex roots $-\rho \pm i\omega$ with $-\rho = -d/2 < 0$.

Solutions: $e^{-\rho t}[c_1\cos(\omega t) + c_2\sin(\omega t)] = e^{-\rho t}[r\cos(\omega t - \alpha)]$ ($\rightarrow 0$ as $t \rightarrow \infty$) Oscillations with amplitude going to zero

Critically damped. d > 0, $\Delta = 0$. One (double) real root $-\rho < 0$. Solutions: $(c_1 + c_2 t) e^{-\rho_1 t}$

Solutions: $(c_1 + c_2 t) e^{-\rho_1 t}$ $(\to 0 \text{ as } t \to \infty)$ No oscillations (at most one crossing of t-axis; why?!)

Overdamped. d > 0, $\Delta > 0$. Two real roots $-\rho_1, -\rho_2 < 0$. [negative because c, d > 0] Solutions: $c_1 e^{-\rho_1 t} + c_2 e^{-\rho_2 t}$ ($\rightarrow 0$ as $t \rightarrow \infty$) No oscillations (at most one crossing of t-axis)

Adding external forces and the phenomenon of resonance

Example 83. A car is going at constant speed v on a washboard road surface ("bumpy road") with height profile $y(s) = a \cos\left(\frac{2\pi s}{L}\right)$. Assume that the car oscillates vertically as if on a spring (no dashpot). Describe the resulting oscillations.

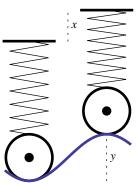
Solution. With x as in the sketch, the spring is stretched by x - y. Hence, by Hooke's and Newton's laws, its motion is described by mx'' = -k(x - y). At constant speed, s = vt and we obtain the DE $mx'' + kx = ky = ka \cos\left(\frac{2\pi vt}{L}\right)$, which is inhomogeneous linear with constant coefficients. Let's solve it.

"Old" roots $\pm i\sqrt{\frac{k}{m}} = \pm i\omega_0$. $\omega_0 = \sqrt{\frac{k}{m}}$ is the natural frequency (the frequency at which the system would oscillate in the absence of external forces).

"New" roots $i \frac{2\pi v}{L} = \pm i\omega$. $\omega = \frac{2\pi v}{L}$ is the external frequency.

Case 1: $\omega \neq \omega_0$. Then a particular solution is $x_p = b_1 \cos(\omega t) + b_2 \sin(\omega t) = A \cos(\omega t - \alpha)$ for unique values of b_1, b_2 (which we do not compute here). The general solution is of the form $x = x_p + C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$.

Case 2: $\boldsymbol{\omega} = \boldsymbol{\omega}_{0}$. Then a particular solution is $x_{p} = t[b_{1} \cos(\omega t) + b_{2} \sin(\omega t)] = At \cos(\omega t - \alpha)$ for unique values of b_{1}, b_{2} (which we do not compute). Note that the amplitude in x_{p} increases without bound; the same is true for the general solution $x = x_{p} + C_{1} \cos(\omega_{0}t) + C_{2} \sin(\omega_{0}t)$. This phenomenon is called resonance; it occurs if an external frequency matches a natural frequency.



The first "car" is assumed to be in equilibrium.

 \diamond

Note that resonance (or anything close to it) is very important for practical purposes because large amplitudes can be very destructive: singing to shatter glass, earth quake waves and buildings, marching soldiers on bridges, ...

Example 84. Consider $x'' + 9x = 10 \cos(2vt)$. For what value of v does resonance occur?

Solution. The natural frequency is 3. The external frequency is 2v. Hence, resonance occurs when $v = \frac{3}{2}$.