Sketch of Lecture 10

 $\langle \rangle$

Example 38. Solve the IVP y''' + 7y'' + 14y' + 8y = 0 with y(0) = 1, y'(0) = 0, y''(0) = 1.

Solution. Last time, we found that the DE has the general solution $y(x) = Ae^{-x} + Be^{-2x} + Ce^{-4x}$. $y(x) = Ae^{-x} + Be^{-2x} + Ce^{-4x}, y(0) = A + B + C = 1$ $y'(x) = -Ae^{-x} - 2Be^{-2x} - 4Ce^{-4x}, y'(0) = -A - 2B - 4C = 0$ $y''(x) = Ae^{-x} + 4Be^{-2x} + 16Ce^{-4x}, y''(0) = A + 4B + 16C = 1$ Solving the system of linear equations, we find A = 3, B = -5/2, C = 1/2. Hence, the solution to the IVP is $y(x) = 3e^{-x} - 5/2e^{-2x} + 1/2e^{-4x}.$

Example 39. Consider the IVP from the previous example.

Note that the DE let's us determine y'''(0) = -7y''(0) - 14y'(0) - 8y(0) = -15 (without solving it!). By applying $\frac{\mathrm{d}}{\mathrm{d}x}$ to the DE, we can likewise find $y^{(4)}(0), y^{(5)}(0), \dots$

 $\overset{ax}{This}$ can be done with any DE and gives another indication why an IVP "usually" has a unique solution, and why initial conditions of this form are very natural to consider.

Example 40. Find the general solution of y'' = 0. [Then, $y^{(n)} = 0$.]

Solution. We know from Calculus that the general solution is y(x) = A + Bx.

Solution. The characteristic equation is $r^2 = 0$. So one solution is $y_1 = e^{0x} = 1$. But what is a second solution? As Calculus showed, a second solution is $y_2 = xe^{0x} = x$. It turns out that this always works! \land

Example 41. Find the general solution of y'' - 2y' + y = 0.

Solution. The characteristic equation is $r^2 - 2r + 1 = (r-1)^2$. Hence, $y_1 = e^x$.

But what is the second solution? Inspired by the previous example, we can check that $y_2 = x e^x$ is a solution. Hence, the general solution is $y(x) = Ae^x + Bxe^x$. \diamond

Theorem 42. Consider a homogeneous linear DE with constant coefficients $y^{(n)}$ + $a_{n-1}y^{(n-1)} + \ldots + a_1y' + a_0y = 0.$ (Its characteristic polynomial is $p(r) = r^n + a_{n-1}r^{n-1} + \ldots + a_1r + a_0.$)

- If r_0 is a root of the characteristic polynomial and if k is its multiplicity (this means that $(r-r_0)^k$ is a factor of p(r)), then e^{r_0x} , xe^{r_0x} , ..., $x^{k-1}e^{r_0x}$ are solutions of the DE.
- Combining these solutions for all roots r_0 , actually gives the general solution.

This is because a polynomial of degree n has (counting with multiplicity) exactly n (possibly complex) roots. More on complex number in due time.

Proof. Set $D = \frac{d}{dx}$. A homogeneous linear DE with constant coefficients can be written as p(D)y = 0, where p(D) is a polynomial in D. [For instance, y'' - 2y' + y = 0 is $D^2y - 2Dy + y = (D^2 - 2D + 1)y = (D - 1)^2y = 0$.] In fact, we see that p(r) is just the characteristic polynomial!

If r_0 is a root of the characteristic polynomial, then $p(r) = q(r) (r - r_0)^k$, where $k \ge 1$ is its multiplicity.

The DE factors likewise and can be written as $q(D) (D - r_0)^k y = 0$.

From here we see that solutions to $(D - r_0)^k y = 0$ will solve our original DE.

Let y(x) be a solution of $(D-r_0)^k y = 0$. Write it as $y(x) = u(x)e^{r_0 x}$ (we can always do that for some u(x)).

Let u(x) be some function. Note that $(D-r_0)[ue^{r_0x}] = u'e^{r_0x} + ur_0e^{r_0x} - r_0[ue^{r_0x}] = u'e^{r_0x}$.

Repeating, we get $(D-r_0)^2 [ue^{r_0x}] = (D-r_0)[u'e^{r_0x}] = u''e^{r_0x}$ and, eventually, $(D-r_0)^k [ue^{r_0x}] = u^{(k)}e^{r_0x}$. In particular, $(D-r_0)^k y = 0$ is solved by $y = u e^{r_0 x}$ if $u^{(k)} = 0$.

This latter condition gives $u(x) = C_0 + C_1 x + \dots + C_{k-1} x^{k-1}$ and it follows that $y(x) = (C_0 + C_1 x + \dots + C_{k-1} x^{k-1})$ $C_{k-1}x^{k-1}e^{r_0x}$ solves our original DE, as claimed.