Understanding DEs without solving them

Slope fields, or sketching solutions

Example 9. Consider the DE y' = -x/y.

Let's pick a point, say, (1,2). If a solution y(x) is passing through that point, then its slope has to be y' = -1/2. We therefore draw a small line through the point (1,2) with slope -1/2. Continuing in this fashion for several other points, we obtain the slope field on the right.

With just a little bit of imagination, we can now anticipate the solutions to look like (half)circles around the origin. Let us check whether $y(x) = \sqrt{r^2 - x^2}$ might indeed be a solution! $y'(x) = \frac{1}{2} \frac{-2x}{\sqrt{r^2 - x^2}} = -x/y(x)$. So, yes, we actually found solutions!

$\begin{array}{c} 3\\2\\1\\-1\\-2\\-3\\-3\\-3\\-2&-1\\0\\1\\-2&-3\\-3\\-2&-1\\0\\1\\2&3\\-3\\-3\\-2&-1\\0\\1\\2&3\\-3\\-3\\-2&-1\\0\\1\\2&3\\-3\\-3\\-2&-1\\0\\1\\2&3\\-3\\-3\\-2&-1\\0\\1\\2&3\\-3\\-2&-3\\-2&-1\\0\\1\\2&3\\-3\\-2&-2&-2\\-2&-2&-2&-2\\-2&-2&-2&-2\\-2&-2&-2&-2\\-2&-2&-2&-2\\-2&-2&-2&-2\\-2&-2&-2&-2\\-$

Existence and uniqueness of solutions

Definition 10. A solution to the IVP y' = f(x, y), y(a) = b is a function y(x), defined on an interval I containing a, such that y'(x) = f(x, y(x)) for all $x \in I$ and y(a) = b.

Theorem 11. ¹Consider the IVP y' = f(x, y), y(a) = b.

- (i) If f(x, y) is continuous [in a rectangle] around (a, b), then there exists a (local²) solution.
- (ii) If both f(x, y) and $\frac{\partial}{\partial y} f(x, y)$ are continuous [in a rectangle] around (a, b), then there exists a (locally³) unique solution.

Example 12. Consider, again, the IVP y' = -x/y, y(a) = b.

Here, f(x, y) = -x/y and $\frac{\partial}{\partial y} f(x, y) = x/y^2$. Both are continuous for all (x, y) with $y \neq 0$. Hence, if $b \neq 0$ then the IVP has a unique solution.

Assume b > 0 (things work similarly for b < 0). Then $y(x) = \sqrt{r^2 - x^2}$ solves the IVP if we choose $r = \sqrt{a^2 + b^2}$. Uniqueness means that there is no other solution to the IVP than this one (which we had guessed).

Example 13. Discuss the IVP y' = y, y(a) = b.

Solution. Here, f(x, y) = y and both f(x, y) and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all (x, y). That means the IVP always has a unique solution (at least locally).

As a consequence, there can be no other solutions to the DE y' = y than the ones of the form $y(x) = Ce^x$. Why?! [Assume that y(x) satisfies y' = y and let (a, b) any value on the graph of y. Then y(x) solves the IVP y' = y, y(a) = b; but so does Ce^x with $C = b/e^a$. The uniqueness implies that $y(x) = Ce^x$.]

Example 14. Last time, we verified that $y' = y^2$, y(0) = 1 is solved by $y(x) = \frac{1}{1-x}$ on $(-\infty, 1)$.

Note that y(x) cannot be continuously extended past x = 1; it is only a local solution! As in the previous example, we find that it is the unique solution to the IVP.

^{1.} The two parts of the theorem are famous results usually attributed to Peano and Picard–Lindelöf.

^{2.} We call this a local solution at a, to emphasize that the interval I could be very small.

^{3.} The interval in which the solution is unique could be smaller than the interval in which it exists.