
Notes for Lecture 7 Fri, 9/5/2025

In general, we can solve any linear first-order DE y 0+P (x)y=Q(x) in this way.

� We want to multiply with an integrating factor f(x) such that the left-hand side of the
DE becomes

f(x)y 0+ f(x)P (x)y= d
dx
[f(x)y]:

Since d

dx
[f(x)y] = f(x)y 0+ f 0(x)y, we need f 0(x)= f(x)P (x) for that.

� Check that f(x)= exp
�Z

P (x)dx
�
has this property.

Comment. This follows directly from computing the derivative of this f(x) via the chain rule.
Homework. On the other hand, note that finding f meant solving the DE f 0 = P (x) f . This is a
separable DE. Solve it by separation of variables to arrive at the above formula for f(x) yourself.
Just to make sure. There is no difference between exp(x) and ex. Here, we prefer the former notation
for typographical reasons.

With that integrating factor, we have the following recipe for solving any linear first-order equation:

(solving linear first-order DEs)

(a) Write the DE in the standard form y 0+P (x)y=Q(x).

(b) Compute the integrating factor as f(x)= exp
�Z

P (x)dx
�
.

[We can choose any constant of integration.]

(c) Multiply the DE from part (a) by f(x) to get

f(x)y 0+ f(x)P (x)y

=
d

dx
[f(x)y]

= f(x)Q(x):

(d) Integrate both sides to get

f(x)y=
Z
f(x)Q(x)dx+C:

Then solve for y by dividing by f(x).

Comment. For better understanding, we prefer to go through the above steps. On the other hand, we can
combine these steps into the following formula for the general solution of y0+P (x)y=Q(x):

y=
1

f(x)

�Z
f(x)Q(x)dx+C

�
where f(x)= e

R
P (x)dx

Existence and uniqueness. Note that the solution we construct exists on any interval on which P and Q are
continuous (not just on some possibly very small interval). This is better than what the existence and uniqueness
theorem (Theorem 23) can guarantee. This is one of the many ways in which linear DEs have particularly nice
properties compared to DEs in general.
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Example 35. Solve xy 0=2y+1, y(¡2)= 0.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2

x
and Q(x)= 1

x
.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2lnjxj= e¡2ln(¡x)=(¡x)¡2= 1

x2
.

Here, we used that, at least locally, x< 0 (because the initial condition is x=¡2< 0) so that jxj=¡x.

(c) Multiply the DE (in standard form) by f(x)= 1

x2
to get

1

x2
dy
dx
¡ 2

x3
y

=
d

dx

�
1

x2
y

� =
1

x3
:

(d) Integrate both sides to get
1

x2
y=

Z
1

x3
dx=¡ 1

2x2
+C:

Hence, the general solution is y(x)=¡1

2
+Cx2.

Solving y(¡2)=¡1

2
+4C =0 for C yields C =

1

8
. Thus, the (unique) solution to the IVP is y(x)= 1

8
x2¡ 1

2
.

Example 36. (extra) Solve y 0=2y+3x¡ 1, y(0)= 2.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2 and Q(x)= 3x¡ 1.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2x.

(c) Multiply the DE (in standard form) by f(x)= e¡2x to get

e¡2x
dy
dx
¡ 2e¡2xy

=
d

dx
[e¡2xy]

=(3x¡ 1)e¡2x:

(d) Integrate both sides to get

e¡2xy =

Z
(3x¡ 1)e¡2xdx

= 3

Z
xe¡2xdx¡

Z
e¡2xdx

= 3

�
¡1
2
xe¡2x¡ 1

4
e¡2x

�
¡
�
¡1
2
e¡2x

�
+C

= ¡3
2
xe¡2x¡ 1

4
e¡2x+C:

Here, we used that
Z
xe¡2xdx = ¡1

2
xe¡2x +

1
2

Z
e¡2xdx = ¡1

2
xe¡2x ¡ 1

4
e¡2x (for instance, via

integration by parts with f(x)=x and g0(x)= e¡2x).

Hence, the general solution is y(x)=¡3

2
x¡1

4
+Ce2x.

Solving y(0)=¡1

4
+C =2 for C yields C =

9

4
.

In conclusion, the (unique) solution to the IVP is y(x)=¡3

2
x¡1

4
+
9

4
e2x.
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