Notes for Lecture 6 Wed, 9/3/2025

Review. Existence and uniqueness theorem (Theorem 23) for an IVP y' = f(z,y), y(a)=b:
If f(z,y)and 8%]"(:1:, y) are continuous around (a,b) then, locally, the IVP has a unique solution.

Example 29. Consider, again, the IVP ' = —z /vy, y(a) =b. [/ 7 20T
Discuss existence and uniqueness of solutions (without solving).
| q ( R N
Solution. The IVP is y'= f(z,y) with f(z,y)=—z/y.
o 2 Lt / / 7N \ \ ]
We compute that a—yf(a:, y)=xz/y".
We observe that both f(z,y) and E%f(m, y) are continuous for all (z,y) us | | | | &
with y #0. “EN NN = A
Hence, if b#£0, then the IVP locally has a unique solution by the existence
and uniqueness theorem. ZENCN N s
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Comment. In Example 14, we found that the DE y’ = —x /vy is solved by y(z)=4+v/D — 22,

Assume b > 0 (things work similarly for b < 0). Then y(x) =+/D — 22 solves the IVP (we need to choose D
so that y(a) = b) if we choose D = a? + b%. This confirms that there exists a solution. On the other hand,
uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case b=07

Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If a # 0, then

y(x) =+/a?—x? and y(x) = —/a? — 2 both solve the IVP (so we certainly don't have uniqueness), however
only in a weak sense: namely, both of these solutions are not valid locally around x = a but only in an interval

of which a is an endpoint (for instance, the IVP y’' = —z /vy, y(2) =0 is solved by y(x) ==4+/4 — 22 but both
of these solutions are only valid on the interval [—2, 2] which ends at 2, and neither of these solutions can be
extended past 2).

Example 30. Consider the initial value problem (22 — 1)y’ +sin(zy) =22, y(a) =0b. For which
values of a and b can we guarantee existence and uniqueness of a (local) solution?

—cos(zy)

. . . 2 —si 1¢]
Solution. Let us write ¥y’ = f(z,y) with f(z,y) :%_n(lxy). Then a—yf(:r, Y) =—7 " (y+=zy’).
Both f(z,y) and (%f(m, y) are continuous for all (x,y) with 2+ 1 which is equivalent to x # 1.

Hence, if a # +1, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 31. Consider the initial value problem 3’ = 4'/3 y(a)=b. For which values of a and
b can we guarantee existence and uniqueness of a (local) solution?

Solution. Let us write y' = f(x,y) with f(z,y)= y/3. Then (,%f(w, y) = %y72/3.

While f(z,y)= y'/3 is always continuous, g%f(:v, y)= éy_Q/S

is only continuous for all (z, y) with y #0.
Hence, if b+ 0, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Challenge. Solve the DE as well as plot the slope field. Then analyze what we can say about solutions in the
case b=0. (This is a case where we get existence but not uniqueness. It illustrates that an extra condition like

continuity of %f(x, y) is needed.)
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ODEs vs PDEs

Important. Note that we are working with functions y(z) of a single variable. This allows us to
write simply 3’ for %y(w) without risk of confusion.

%x(t), as long as this is clear from the context.

Differential equations that involve only derivatives with respect to a single variable are known as
ordinary differential equations (ODEs).

Of course, we may use different variables such as z(t) and 2’ =

On the other hand, differential equations that involve derivatives with respect to several variables
are referred to as partial differential equations (PDEs).

<3_‘1>2u<x, Y+ <a%>2u<x, y) =0,

often abbreviated as ., + u,, =0, is a partial differential equation in two variables.

Example 32. The DE

This particular PDE is known as Laplace’s equation and describes, for ialsonstance, steady-state heat distribu-
tions.

https://en.wikipedia.org/wiki/Laplace’27s_equation

This and other fundamental PDEs will be discussed in Differential Equations II.

Linear first-order DEs

A linear differential equation is one where the function ¥ and its derivatives only show up linearly
(i.e. there are no terms such as 2, 1/, sin(y) or y-y’).

As such, the most general linear first-order DE is of the form
A(x)y'+ B(x)y+ C(z) =0.

Such a DE can be rewritten in the following “standard form" by dividing by A(x) and rearranging:

(linear first-order DE in standard form)

y'+ P(r)y=Q()

We will use this standard form when solving linear first-order DEs.

Example 33. (extra “warmup”) Solve %: 2292

Solution. (separation of variables) % % =2z, —i =z24C.

Hence the general solution is y = ﬁ [There also is the singular solution y =0.]

Solution. (in other words) Note that %ﬂ =2z can be written as i[fl} = i[9102]
y? dx dx Yy

From there it follows that —% =122+ C, as above.

We now use the idea of writing both sides as a derivative (which we then integrate!) to also solve
DEs that are not separable. We will be able to handle all first-order linear DEs this way.

The multiplication by % will be replaced by multiplication with a so-called integrating factor.
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Example 34. Solve y' =z — y.
Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as y’ + y =.
Next, multiply both sides with e” (we will see in a little bit how to find this “integrating factor’) to get

ey’ + eTy=xe®.
cg TEd

d
= @[emy]

The “magic”’ part is that we are able to realize the new left-hand side as a derivative!

We can then integrate both sides to get
ety = / rzetdr=xe® —e”+C.

From here it follows that y=2 — 1+ Ce™7.
Comment. For the final integral, we used that [ ze®dx =ze® — [ e®dx = xe® — e 4+ C which follows, for

instance, via integration by parts (with f(z) =z and g’(z) = e® in the formula reviewed below).

Review. The product rule (fg)' = f' g+ fg’ implies fg:/f’g+/fg’.

The latter is equivalent to integration by parts:

/ f(@)g'(@)dz = f(x)g(x) - / f/()g(x)dx

Comment. Sometimes, one writes g’(z)dx =dg(x).

Armin Straub 14
straub@southalabama.edu



