Review. Existence and uniqueness theorem (Theorem 23) for an IVP y'=f(x,y), y(a)=b: If f(x,y) and $\frac{\partial}{\partial y}f(x,y)$ are continuous around (a,b) then, locally, the IVP has a unique solution.

Example 29. Consider, again, the IVP y' = -x/y, y(a) = b. Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y' = f(x, y) with f(x, y) = -x/y.

We compute that $\frac{\partial}{\partial u}f(x,y) = x/y^2$.

We observe that both f(x,y) and $\frac{\partial}{\partial y}f(x,y)$ are continuous for all (x,y) with $y\neq 0$.

Hence, if $b \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Comment. In Example 14, we found that the DE y' = -x/y is solved by $y(x) = \pm \sqrt{D-x^2}$.

Assume b>0 (things work similarly for b<0). Then $y(x)=\sqrt{D-x^2}$ solves the IVP (we need to choose D so that y(a)=b) if we choose $D=a^2+b^2$. This confirms that there exists a solution. On the other hand, uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case b = 0?

Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If $a \neq 0$, then $y(x) = \sqrt{a^2 - x^2}$ and $y(x) = -\sqrt{a^2 - x^2}$ both solve the IVP (so we certainly don't have uniqueness), however only in a weak sense: namely, both of these solutions are not valid locally around x = a but only in an interval of which a is an endpoint (for instance, the IVP y' = -x/y, y(2) = 0 is solved by $y(x) = \pm \sqrt{4 - x^2}$ but both of these solutions are only valid on the interval [-2, 2] which ends at 2, and neither of these solutions can be extended past 2).

Example 30. Consider the initial value problem $(x^2 - 1)y' + \sin(xy) = x^2$, y(a) = b. For which values of a and b can we guarantee existence and uniqueness of a (local) solution?

Solution. Let us write y'=f(x,y) with $f(x,y)=\frac{x^2-\sin(xy)}{x^2-1}$. Then $\frac{\partial}{\partial y}f(x,y)=\frac{-\cos(xy)}{x^2-1}\cdot(y+xy')$.

Both f(x,y) and $\frac{\partial}{\partial y}f(x,y)$ are continuous for all (x,y) with $x^2 \neq 1$ which is equivalent to $x \neq \pm 1$.

Hence, if $a \neq \pm 1$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 31. Consider the initial value problem $y' = y^{1/3}$, y(a) = b. For which values of a and b can we guarantee existence and uniqueness of a (local) solution?

Solution. Let us write y' = f(x,y) with $f(x,y) = y^{1/3}$. Then $\frac{\partial}{\partial y} f(x,y) = \frac{1}{3} y^{-2/3}$.

While $f(x,y)=y^{1/3}$ is always continuous, $\frac{\partial}{\partial y}f(x,y)=\frac{1}{3}y^{-2/3}$ is only continuous for all (x,y) with $y\neq 0$.

Hence, if $b \neq 0$, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Challenge. Solve the DE as well as plot the slope field. Then analyze what we can say about solutions in the case b=0. (This is a case where we get existence but not uniqueness. It illustrates that an extra condition like continuity of $\frac{\partial}{\partial u} f(x,y)$ is needed.)

ODEs vs PDEs

Important. Note that we are working with functions y(x) of a single variable. This allows us to write simply y' for $\frac{d}{dx}y(x)$ without risk of confusion.

Of course, we may use different variables such as x(t) and $x' = \frac{d}{dt}x(t)$, as long as this is clear from the context.

Differential equations that involve only derivatives with respect to a single variable are known as ordinary differential equations (ODEs).

On the other hand, differential equations that involve derivatives with respect to several variables are referred to as **partial differential equations** (PDEs).

Example 32. The DE

$$\left(\frac{\partial}{\partial x}\right)^2 u(x,y) + \left(\frac{\partial}{\partial y}\right)^2 u(x,y) = 0,$$

often abbreviated as $u_{xx} + u_{yy} = 0$, is a partial differential equation in two variables.

This particular PDE is known as Laplace's equation and describes, for ialsonstance, steady-state heat distributions.

https://en.wikipedia.org/wiki/Laplace%27s_equation

This and other fundamental PDEs will be discussed in Differential Equations II.

Linear first-order DEs

A **linear differential equation** is one where the function y and its derivatives only show up linearly (i.e. there are no terms such as y^2 , 1/y, $\sin(y)$ or $y \cdot y'$).

As such, the most general linear first-order DE is of the form

$$A(x)y' + B(x)y + C(x) = 0.$$

Such a DE can be rewritten in the following "standard form" by dividing by A(x) and rearranging:

(linear first-order DE in standard form)

$$y' + P(x)y = Q(x)$$

We will use this standard form when solving linear first-order DEs.

Example 33. (extra "warmup") Solve $\frac{dy}{dx} = 2xy^2$.

Solution. (separation of variables) $\frac{1}{y^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 2x$, $-\frac{1}{y} = x^2 + C$.

Hence the general solution is $y = \frac{1}{D - x^2}$. [There also is the singular solution y = 0.]

Solution. (in other words) Note that $\frac{1}{y^2} \frac{\mathrm{d}y}{\mathrm{d}x} = 2x$ can be written as $\frac{\mathrm{d}}{\mathrm{d}x} \left[-\frac{1}{y} \right] = \frac{\mathrm{d}}{\mathrm{d}x} [x^2]$.

From there it follows that $-\frac{1}{y} = x^2 + C$, as above.

We now use the idea of writing both sides as a derivative (which we then integrate!) to also solve DEs that are not separable. We will be able to handle all first-order linear DEs this way.

The multiplication by $\frac{1}{u^2}$ will be replaced by multiplication with a so-called **integrating factor**.

Example 34. Solve y' = x - y.

Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as y' + y = x.

Next, multiply both sides with e^x (we will see in a little bit how to find this "integrating factor") to get

$$\underbrace{e^x y' + e^x y}_{= \frac{d}{dx}} = x e^x$$

The "magic" part is that we are able to realize the new left-hand side as a derivative! We can then integrate both sides to get

$$e^x y = \int x e^x dx = x e^x - e^x + C.$$

From here it follows that $y = x - 1 + Ce^{-x}$.

Comment. For the final integral, we used that $\int x e^x dx = x e^x - \int e^x dx = x e^x - e^x + C$ which follows, for instance, via integration by parts (with f(x) = x and $g'(x) = e^x$ in the formula reviewed below).

Review. The product rule (fg)' = f'g + fg' implies $fg = \int f'g + \int fg'$.

The latter is equivalent to integration by parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int f'(x)g(x)dx$$

Comment. Sometimes, one writes g'(x)dx = dg(x).