
Sketch of Lecture 4 Wed, 1/27/2021

Example 23. (bonus challenge!) Eve, can you crack the following message?

KOBOSNOXSGYOM

Word on the street is that Alice was using the Vigenere cipher with a key of size 2.

(To collect a bonus point, send me an email before next week with the plaintext and how you found it.)

Example 24. The challenge from Example 22 was encrypted using a shift cipher. The key space
has size 26, so a brute-force attack results in immediate success: we find that the plaintext is :::

This is the worst kind of vulnerability: we successfully mounted a ciphertext only attack.
That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).

Attacks

So far, we considered the weakest kind of attack only: namely, a ciphertext only attack. And,
even then, the historical ciphers prove to be terribly insecure.

However, we need to also worry about attacks where our enemy has additional insight.
� In a known plaintext attack, the enemy somehow has knowledge of a plaintext-ciphertext pair (m; c).

� In a chosen plaintext attack, the enemy can, herself, compute c=E(m) for a chosen plaintextm (�gained
some sort of access to our encryption device�).

� In a chosen ciphertext attack, the enemy can, herself, compute m = D(c) for a chosen ciphertext c
(�gained some sort of access to our decryption device�).

There exist many variations of these. Sometimes, the attacker can make several choices (maybe even adaptively),
sometimes she only has partial information.

Example 25. Alice sends the ciphertext BKNDKGBQ to Bob. Somehow, Eve has learned
that Alice is using the Vigenere cipher and that the plaintext is ALLCLEAR. Next day, Alice
sends the message DNFFQGE. Crack it and figure out the key that Alice used! (What kind
of attack is this?)

Solution. This is a known plaintext attack.
Since m+ k= c (to be interpreted characterwise, modulo 26, and with k repeated as necessary), we can find k
simply as k= c¡m.
For instance, since A (value 0!) got encrypted to B, the first letter of the key is B.

c B K N D K G B Q
m ¡ A L L C L E A R
k = B Z C B Z C B Z

We conclude that the key is k=BZC. Now, we can decrypt any future message that Alice sends using this key.
For instance, we easily decrypt DNFFQGE to CODERED (using m= c¡ k).

All of the historical ciphers we have seen, including the substitution cipher below, fall apart
completely under a known plaintext attack.

Example 26. (substitution cipher) In a substitution cipher, the key k is some permutation of
the letters A;B; :::; Z. For instance, k=FRA:::. Then we encrypt A!F , B!R, C!A and
so on. How large is the key space?
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Solution. Key space has size 26!� 1026.6� 288.4, so a key can be stored using 89 bits. That's actually a fairly
large key space (for instance, DES has a key size of 56 bits only). Too large to go through by brute force.
However, still easy to break. Since each letter is always replaced with the same letter, this cipher is susceptible
to a frequency attack, exploiting that certain letters (and, more generally, letter combinations!) occur much
more frequently in, say, English text than others. For instance, Lewand's book on Cryptology lists the following
frequencies:
E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%, I: 7%, N: 6.7%, S: 6.3%, H: 6.1%, R: 6%, D: 4.3%, L: 4%, C: 2.8%, :::
The rarest letters are Q and Z with a frequency of about 0.1% only. (The exact frequencies and precise ordering
various between different sources and the body of text that the frequencies were obtained from.)
The most common letter pairs (digrams) are TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR TI
HI AS TO.
More information at: https://en.wikipedia.org/wiki/Letter_frequency
Comment. Note that the frequencies and even the ranking depend considerably on the source of text. For
instance, using government telegrams, a military resource lists EN followed by RE, ER as the most frequent
digrams. That same manual suggests SENORITA as a mnemonic to remember the most frequent letters.
http://www.umich.edu/~umich/fm-34-40-2/ (Field Manual 34-40-2, Department of the Army, 1990)

Example 27. It seems convenient to add the space as a 27th letter in the historic encryption
schemes. Can you think of a reason against doing that?
Solution. In most texts, the space occurs more frequently and more regularly than any other letter. Adding it
to the encryption schemes would make them even more susceptible to attacks.

Fermat's little theorem

Example 28. (warmup) What a terrible blunder::: Explain what is wrong!

(incorrect!) 109� 32=9� 2 (mod 7)

Solution. 109= 10 � 10 � ::: �10� 3 � 3 � ::: � 3=39. Hence, 109� 39 (mod7).
However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).
Corrected calculation. 32� 2, 34� 4, 38� 16� 2. Hence, 39=38 � 31� 2 � 3�¡1 (mod7).
By the way, this approach of computing powers via exponents that are 2; 4; 8; 16; 32; ::: is called binary
exponentiation. It is crucial for efficiently computing large powers.
Corrected calculation (using Fermat). 36 � 1 just like 30 = 1. Hence, we are allowed to reduce exponents
modulo 6. Hence, 39� 33�¡1 (mod7).

Theorem 29. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

Proof. (beautiful!) Since a is invertible modulo p, the first p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all different modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �
Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that xn+ yn=
zn has no integer solutions if n> 2 (only recently proved by Wiles).
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Sketch of Lecture 5 Fri, 1/29/2021

Example 30. (bonus challenge!) You intercept the following message from Alice:

WHCUHFWXOWHUQXOMOMQVSQWAMWHCUHFXOLNWXQMQVSQWAWMQLN

Your experience tells you that Alice is using a substitution cipher. You also know that this message
contains the word �secret�. Can you crack it?
Note. In modern practice, it is not uncommon to know (or suspect) what a certain part of the message should
be. For instance, PDF files start with �%PDF� (0x25504446).
See https://en.wikipedia.org/wiki/Magic_number_(programming) for more such instances.

(To collect a bonus point, send me an email before next week with the plaintext and how you found it.)

Example 31. Compute 31003 (mod101).
Solution. Since 101 is a prime, 3100� 1 (mod101) by Fermat's little theorem.
Because 3100� 30 (mod101), this enables us to reduce exponents modulo 100.
In particular, since 1003� 3 (mod100), we have 31003� 33= 27 (mod101).

Euler's theorem

Recall that Fermat's little theorem is just the special case of Euler's theorem :

Theorem 32. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).
Proof. Euler's theorem can be proved along the lines of our earlier proof of Fermat's little theorem. The only
adjustment is to only start with multiples ka where k is invertible modulo n. There are �(n) such residues k,
and so that's where Euler's phi function comes in. Can you complete the proof? �

Example 33. What are the last two (decimal) digits of 37082?

Solution. We need to determine 37082 (mod100). �(100)= �(2252)= �(22)�(52)= (22¡ 21)(52¡ 51)=40.
Since gcd (3; 100)= 1 and 7082� 2 (mod40), Euler's theorem shows that 37082� 32=9 (mod100).

Binary exponentiation

Example 34. Compute 325 (mod101).
Solution. Fermat's little theorem is not helpful here.
Instead, we do binary exponentiation:
32=9, 34= 81�¡20, 38� (¡20)2= 400�¡4, 316� (¡4)2� 16, all modulo 101
25= 16+8+1 [Every integer n> 0 can be written as a sum of distinct powers of 2 (in a unique way).]

Hence, 325=316 � 38 � 31� 16 � (¡4) � 3=¡192� 10 (mod101).

Example 35. (extra practice) Compute 220 (mod41).
Solution. 22=4, 24= 16, 28= 256� 10, 216� 100� 18. Hence, 220=216 � 24� 18 �16= 288� 1 (mod41).
Or: 25= 32�¡9 (mod41). Hence, 220=(25)4� (¡9)4= 812� (¡1)2=1 (mod41).

Comment. Write a=220 (mod41). It follows from Fermat's little theorem that a2=240� 1 (mod41). The
argument below shows that a��1 (mod41) [but we don't know which until we do the calculation].

The equation x2� 1 (mod p) is equivalent to (x¡ 1)(x+1)� 0 (mod p) [b/c (x¡ 1)(x+1)=x2¡ 1]. Since
p is a prime and pj(x¡ 1)(x+1), we must have pj(x¡ 1) or pj(x+1). In other words, x��1 (mod p).
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Representations of integers in different bases

We are commonly using the decimal system of writing numbers:
1234=4 �100+3 � 101+2 �102+1 � 103:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=4 � b0+3 � b1+2 � b2+1 � b3:

In this example, b > 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.

Example 36. 25= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20. We write 25=(11001)2.

Example 37. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49= (:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 , with 1 left over. Hence, 49= (110001)2.

Other bases.
What is 49 in base 3? 49= 16 � 3+ 1 , 16=5 � 3+ 1 , 5=1 � 3+ 2 , 1 . Hence, 49=(1211)3.

What is 49 in base 5? 49= (144)5.
What is 49 in base 7? 49= (100)7.

Example 38. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer
applications.
For instance, in JavaScript or Python, 0b::: means (:::)2, 0o::: means (:::)8, and 0x::: means (:::)16.
The digits 0; 1; :::; 15 in hexadecimal are typically written as 0; 1; :::; 9; A;B;C;D;E; F .
Example. FACE value in decimal? (FACE)16= 15 � 163+ 10 � 162+ 12 � 16+ 14= 64206
Practical example. chmod 664 file.tex (change file permission)

664 are octal digits, consisting of three bits: 1= (001)2 execute (x), 2= (010)2 write (w), 4= (100)2 read (r)

Hence, 664 means rw,rw,r. What is rwx,rx,-? 750

By the way, a fourth (leading) digit can be specified (setting the flags: setuid, setgid, and sticky).

Example 39. (terrible jokes, parental guidance advised)
There are I0 types of people::: those who understand binary, and those who don't.

Of course, you knew that. How about:
There are II types of people::: those who understand Roman numerals, and those who don't.

It's not getting any better:
There are I0 types of people::: those who understand hexadecimal, F the rest :::

Example 40. (yet another joke) Why do mathematicians confuse Halloween and Christmas?
Because 31 Oct = 25 Dec.
Get it? (31)8=1+3 � 8= 25 equals (25)10= 25.

Fun borrowed from: https://en.wikipedia.org/wiki/Mathematical_joke
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Sketch of Lecture 6 Mon, 2/1/2021

Modern ciphers

Example 41. For modern ciphers, we will change the alphabet from A;B; :::; Z to 0; 1. One of
the most common ways of encoding text is ASCII.
In ASCII (American Standard Code for Information Interchange), each letter is represented using 8 bits (1 byte).
Among the 28= 256 many characters are the usual letters, as well as common symbols.
For instance: space=(20)16, �0�=(30)16, A=(41)16=(0100; 0001)2= 65, a= (61)16= (0110;0001)2= 97
See, for instance, http://www.asciitable.com for the full table.

Example 42. The new (8/2018) insignia of FinCEN features binary digits. What do they mean?
01000110 01101001 01101110 01000011 01000101 01001110 https://www.fincen.gov

By the way. If you ever have more than $10; 000 in foreign accounts, you must file a report to FinCEN.

One-time pad

Definition 43. The �exclusive or� (XOR), often written �, is defined bitwise:
0 0 1 1

� 0 1 0 1
= 0 1 1 0

Note. On the level of individual bits, this is just addition modulo 2.
By the way. Best thing about a boolean: even if you are wrong, you are only off by a bit.

Example 44. 1011� 1111= 0100

Example 45. Observe that a� b� b= a.
One way to see that is think bitwise in terms of addition modulo 2. Then, a+ b+ b= a+2b� a (mod2).

A one-time pad works as follows. We use a key k of the same length as the message m. Then
the ciphertext is

c=Ek(m)=m� k:

To decipher, we use m=Dk(c)= c� k.
As the name indicates, we must never use this key again!

Note. Observe that encryption and decryption are the same routine.
Comment. If that is helpful, a one-time pad is doing exactly the same as the Vigenere cipher if we use a key of
the same length as the message (also, we use 0; 1 as our letters instead of the classical A;B; :::; Z).

Example 46. Using a one-time pad with key k = 1100; 0011, what is the message m = 1010;
1010 encrypted to?
Solution. c=m� k= 0110; 1001

If a one-time pad (with perfectly random key) is used exactly once to encrypt a message, then
perfect confidentiality is achieved (eavesdropping is hopeless).
Meaning that Eve intercepting the ciphertext can draw absolutely no conclusions about the plaintext (because,
without information on the key, every text of the right length is actually possible and equally likely), see next
example.
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Example 47. A ciphertext only attack on the one-time pad is entirely hopeless. Explain why!

Solution. The attacker only knows c =m � k. The attacker is unable to get any information on m, because
every other message m0 (of the right length) could have resulted in the same ciphertext c.
Indeed, the key k 0=m0� c encrypts m0 to c as well (because m0� k0=m0� (m0� c) = c). Moreover, every
plaintext m0 is equally likely because it corresponds to a unique key.

The next example highlights the importance of only using the key once.

Example 48. (attack on the two-time pad) Alice made a mistake and encrypted the two
plaintexts m1, m2 using the same key k. How can Eve exploit that?

Solution. Eve knows the two ciphertexts c1=m1� k and c2=m2� k.
Hence, she can compute c1� c2=(m1� k)� (m2� k) =m1�m2.
This means that Eve knows m1 � m2, which is information about the original plaintexts (no key involved!).
That's a cryptographic disaster: Eve should never be able to learn anything about the plaintexts.
In fact. If the plaintexts are, say, English text encoded using ASCII then Eve very possibly can (almost)
reconstruct both m1 and m2 from m1�m2. The reason for that is that the messages are expressed in ASCII,
which means 8 bits per character of text. However, the entropy (a measure for the amount of information in a
message) of (longer) typical English text is frequently below 2 bits per character.
Some details and beautiful graphical illustration are given at:
http://crypto.stackexchange.com/questions/59/taking-advantage-of-one-time-pad-key-reuse

We saw in Example 47 that ciphertext only attacks on the one-time pad are entirely hopeless.
What about other attacks?

Attacks like known plaintext or chosen plaintext don't apply if the key is only to be used once.

Yet, the one-time pad by itself provides little protection of integrity. The next example shows
how tampering is possible without knowledge about the key.

Example 49. Alice sends an email to Bob using a one-time pad. Eve knows that and concludes
that, per email standard, the plaintext must begin with To: Bob. Eve wants to tamper with the
message and change it to To: Boo, for a light scare.

� Eve wants to change the 7th letter of the plain text m from b to o.

� Since b is 0x62 and o is 0x6F , we have b� o=0x0D. Hence, b� 0x0D= o.

� Therefore, if e=0x000000000000||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
6 characters

0D00:::, then �TO: Bob:::�|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
m

� e= �TO: Boo:::�|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
m0

.

� Alice sends c=m� k. If Eve changes the ciphertext c to c0= c� e, then Bob receives c0 and decrypts

it to c 0� k=m� k||||||||||||||||||||{z}}}}}}}}}}}}}}}}}}}}
=c

� e
zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz z}|{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{ {c 0

� k=m� e=m0, which is what Eve intended.
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Using the one-time pad presents several challenges, including:

� keys must not be reused (see Example 48)

� while perfectly protecting against eavesdropping (if done correctly), the one-time pad is
not secure against tampering (see Example 49)

� key distribution and management
Alice and Bob have to somehow exchange huge amounts of keys, so that, at a later time, they are able
to communicate securely.

� for perfect confidentiality, the key must be perfectly random
But how can we produce huge amounts of random bits?
Especially, how to teach a deterministic machine like a computer to do that? Think about it! This is
much more challenging that it may seem at first:::

These issues make one-time pads difficult to use in practice.
Historic comment. During the Cold War, the �hot line� between Washington and Moscow apparently used one-
time pads for secure communication.
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