Problem 1

Example 25. Consider the following compression function C(x) which takes three bits input and outputs two bits:

x	000	001	010	011	100	101	110	111
C(x)	10	00	11	01	01	10	00	11

Let H(x) be the hash function obtained from C(x) using the Merkle–Damgård construction (using initial value $h_1 = 0$). Compute H(11000).

```
Solution. Here, b = 2 and c = 1, so that each x_i is 1 bit: x_1x_2x_3x_4x_5 = 11000.

h_1 = 00

h_2 = C(h_1, x_1) = C(001) = 00

h_3 = C(h_2, x_2) = C(001) = 00

h_4 = C(h_3, x_3) = C(000) = 10

h_5 = C(h_4, x_4) = C(100) = 01

h_6 = C(h_5, x_5) = C(010) = 11

Hence, H(11000) = h_6 = 11.
```

Problem 2

Example 26. Bob's public RSA key is (N, e) = (35, 19). His private key is d = 19. For signing, Bob uses the (silly) hash function $H(x) = x \pmod{22}$. Determine Bob's signature s of the message m = 361.

Solution. $H(m) = 361 \pmod{22} = 9$. The signature therefore is $s = H(m)^d \pmod{N} = 9^{19} \equiv 9 \pmod{35}$.

Problem 3

Example 27. Alice uses an RSA signature scheme and the (silly) hash function $H(x) = x_1 + x_2$, where $x_1 = 3x \pmod{11}$ and $x_2 = 2x \pmod{29}$, to sign the message m = 1299 with the signature s = 121. Forge a second signed message.

Solution. Since we have no other information, in order to forge a signed message, we need to find another message with the same hash value as m = 1299. From our experience with the Chinese remainder theorem, we realize that changing x by $11 \cdot 29$ does not change H(x). Since $1299 + 11 \cdot 29 = 1618$, a second signed message is (1618, 121).