
Sketch of Lecture 33 Wed, 4/22/2020

Application: digital signatures

Goal: Using a private key, known only to her, Alice can attach her digital signature s to any
message m. Anyone knowing her public key can then verify that it could only have been Alice,
who signed the message.

� Consequently, in contrast to usual signatures, digital signatures must depend on the message to be signed
so that they cannot be simply reproduced by an adversary.

� This should sound a lot like public-key cryptography!

Cryptographically speaking, a digitally signed message (m; s) from Alice to Bob achieves:

� integrity: the message has not been accidentally or intentionally modified

� authenticity: Bob can be confident the message came from Alice
In fact, we gain even more: not only is Bob assured that the message is from Alice, but the evidence
can be verified by anyone. We have �proof� that Alice signed the message. This is referred to as non-
repudiation. We refer to a technical not a legal term here: if you are curious about legal aspects of
digital signatures, see, e.g.:

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108

For comparison, sending a message with its hash (m;H(m)) only achieves integrity.

Example 204. (authentication using digital signatures) Last time, we saw that using human
generated and memorized passwords is problematic even if done �right� (Example 200). Among
other things, digital signatures provide an alternative approach to authentication.
Authentication. If Alice wants to authenticate herself with a server, the server sends her a (random) message.
Using her private key, Alice signs this message and sends it back to the server. The server then verifies her
(digital) signature using Alice's public key.
Obvious advantage. The server (like everyone else) doesn't know Alice's secret, so it cannot be stolen from the
server (of course, Alice still needs to protect her secret from it being stolen).

(RSA signatures) Let H be a collision-resistant hash function.

� Alice creates a public RSA key (N; e). Her (secret) private key is d.

� Her signature of m is s=H(m)d (modN).

� To verify the signed message (m; s), Bob checks that H(m)= se (modN).

This is secure if RSA is secure against known plaintext attacks.

Example 205. We use the silly hash function H(x)=x (mod10).
Alice's public RSA key is (N; e)= (33; 3), her private key is d=7.

(a) How does Alice sign the message m= 12345?

(b) How does Bob verify her message?

(c) Was the message (m; s)= (314; 2) signed by Alice?

Armin Straub
straub@southalabama.edu

79

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108
https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108


Solution.

(a) H(m) = 5. The signature therefore is s = 57 (mod 33) (note how computing that signature requires
Alice's private key). Computing that, we find s= 14.

(b) Bob receives the signed message (m; s)= (12345; 14).
He computes H(m)= 5 and then checks whether H(m)� s3 (mod33) (for which he only needs Alice's
public key). Indeed, 143� 5 (mod33), so the signature checked out.

(c) We computeH(m)=4 and then need to check whetherH(m)�s3 (mod33). Since 23�8�/ 4 (mod33),
the signature does not check out. Alice didn't sign the message.

Just to make sure. What's a collision of our hash function? Why is it totally not one-way?

Example 206. Why should Alice sign the hash H(m) and not the message m?

Solution. A practical reason is that signing H(m) is simpler/faster. The message m could be long, in which
case we would have to do something like chop it into blocks and sign each block (but then Eve could rearrange
these, so we would have to do something more clever, like for block ciphers). In any case, we shouldn't just sign
m (modN) because then Eve can just replace m with any m0 as long as m�m0 (modN).
There is another issue though. Namely, Eve can do the following no message attack: she starts with any signature
s, then computes m= se (modN). Everyone will then believe that (m; s) is a message signed by Alice. This
does not work if H is a one-way function: Eve now needs to find m such that H(m) = se (modN), but she
fails to find such m if H is one-way.

Example 207. Is it enough if the hash for signing is one-way but not collision-resistant?
Solution. No, that is not enough. If there is a collision H(m)=H(m0), then Eve can ask Alice to signm to get
(m; s) and later replace m with m0, because (m0; s) is another valid signed message. (See also the comments
after the discussion of birthday attacks.)
Comment. This question is of considerable practical relevance, since hash functions like MD5 and SHA-1 have
been shown to not be collision-resistant (but are still considered essentially preimage-resistant, that is, one-way).
In the case of MD5, this has been exploited in practice:
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities

Example 208. Alice uses an RSA signature scheme and the (silly) hash function H(x)=x1+x2,
where x1=x−1 (mod11) and x2=x−1 (mod7) [with 0−1 interpreted as 0] to produce the signed
message (100; 13). Forge a second signed message.

Solution. Since we have no other information, in order to forge a signed message, we need to find another
message with the same hash value as m= 100. From our experience with the Chinese remainder theorem, we
realize that changing x by 7 � 11 does not change H(x). Hence, a second signed message is (177; 13).

Comment. The hash H(m) for m= 100 is H(100)= (100−1)mod11+ (100−1)mod7=1+4=5.

Similar to what we did with RSA signatures, one can use ElGamal as the basis for digital signatures.
A variation of that is the DSA (digital signature algorithm), another federal standard.

https://en.wikipedia.org/wiki/ElGamal_signature_scheme

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Not surprisingly, the hashes mandated for DSA are from the SHA family.

Armin Straub
straub@southalabama.edu

80

https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/ElGamal_signature_scheme
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

