Homework Set 9 (Lecture 33)

Problem 2

Example 25. Bob's public RSA key is (N, e) = (35, 19). His private key is d = 19. For signing, Bob uses the (silly) hash function $H(x) = x \pmod{22}$. Determine Bob's signature s of the message m = 361.

Solution. $H(m) = 361 \pmod{22} = 9$. The signature therefore is $s = H(m)^d \pmod{N} = 9^{19} \equiv 9 \pmod{35}$.

Problem 3

Example 26. Alice uses an RSA signature scheme and the (silly) hash function $H(x) = x_1 + x_2$, where $x_1 = 3x \pmod{11}$ and $x_2 = 2x \pmod{29}$, to sign the message m = 1299 with the signature s = 121. Forge a second signed message.

Solution. Since we have no other information, in order to forge a signed message, we need to find another message with the same hash value as m = 1299. From our experience with the Chinese remainder theorem, we realize that changing x by $11 \cdot 29$ does not change H(x). Since $1299 + 11 \cdot 29 = 1618$, a second signed message is (1618, 121).