Problem 6

Example 7. What are the multiplicative orders of 2 and 4 modulo 7?

Solution. Since $\phi(7) = 6$, the possible orders of residues modulo 7 are 1, 2, 3, 6. Since $2^2 = 4 \not\equiv 1$, $2^3 \equiv 1 \pmod{7}$, the multiplicative order of 2 (mod 7) is 3. Since $4^2 \equiv 2 \not\equiv 1$, $4^3 \equiv 1 \pmod{7}$, the multiplicative order of 4 (mod 7) is 3. **Alternatively.** For the second part, we could have also used that, if $x \pmod{m}$ has (multiplicative) order k, then x^a has order $\frac{k}{\gcd(k, a)}$. Therefore, $4 = 2^2$ has multiplicative order $\frac{3}{\gcd(3, 3)} = 3$ modulo 7.

Problem 7

Example 8. Suppose 4 has multiplicative order 17 modulo m. What is the multiplicative order of 64 modulo m?

Solution. Recall that, if $x \pmod{m}$ has (multiplicative) order k, then x^a has order $\frac{k}{\gcd{(k, a)}}$. Therefore, $64 = 4^3$ has multiplicative order $\frac{17}{\gcd{(17, 3)}} = 17$ modulo m.

Problem 8

Example 9. Suppose 2 has multiplicative order 21 modulo m. What is the multiplicative order of 8 modulo m?

Solution. Recall that, if $x \pmod{m}$ has (multiplicative) order k, then x^a has order $\frac{k}{\gcd{(k, a)}}$. Therefore, $8 = 2^3$ has multiplicative order $\frac{21}{\gcd{(21, 3)}} = 7$ modulo m.