
Sketch of Lecture 16 Wed, 2/19/2020

Example 98. How can you check whether a huge randomly selected number N is prime?
Solution. Compute 2N−1 (modN) using binary exponentiation. If this is �/1 (modN), then N is not a prime.
Otherwise,N is a prime or 2 is a Fermat liar moduloN (but the latter is exceedingly unlikely for a huge randomly
selected number N ; the bonus challenge below indicates that this is almost as unlikely as randomly running into
a factor of N).
Comment. There is nothing special about 2 here (you could also choose 3 or any other generic residue).

Example 99. (bonus challenge) If an−1 � 1 (mod n) but a(n−1)/2 �/ �1 (mod n), then we
can find a factor of n! How?!
For instance. a= 38 and n= 221 in Example 96.
Comment. However, note that this only happens if a is a Fermat liar modulo n, and these are typically very
rare. So, unfortunately, we have not discovered an efficient factorization algorithm. [But we have run into an
idea, which is used for some of the best known factorization algorithms. If time permits, more on that later:::]

Send in a solution by 2/24 for a bonus point!

How many primes are there?

Theorem 100. (Euclid) There are infinitely many primes.
Proof. Assume (for contradiction) there is only finitely many primes: p1; p2; :::; pn.
Consider the number N = p1 � p2 � ::: � pn+1.
None of the pi divide N (because division of N by any pi leaves remainder 1).
Thus any prime dividing N is not on our list. Contradiction.
Just being silly. Similarly, there are infinitely many composite numbers.
Indeed, assume (for contradiction) there is only finitely many composites: m1;m2; :::;mn.
Consider the number N =m1 �m2 � ::: �mn (don't add 1).
N is not on our list. Contradiction.
Historical note. This is not necessarily a proof by contradiction, and Euclid (300BC) himself didn't state it as
such. Instead, one can think of it as a constructive machinery of producing more primes, starting from any finite
collection of primes. �

The following famous and deep result quantifies the infinitude of primes.

Theorem 101. (prime number theorem) Let �(x) be the number of primes 6 x. Then

lim
x!1

�(x)
x/ln(x)

= 1:

In other words: Up to x, there are roughly x/ln(x) many primes.
Examples.
proportion of primes up to 106: 78; 498

106
= 7.85% vs the estimate 1

ln(106)
=

1

6ln(10)
= 7.24%

proportion of primes up to 1012: 37; 607; 912; 018
1012 = 3.76% vs the estimate 1

ln(1012) =
1

12ln(10) = 3.62%

An example of huge relevance for crypto.
By the PNT, the proportion of primes up to 22048 is about 1

ln(22048) = 0.0704%.

That means, roughly, 1 in 1500 numbers of this magnitude are prime. That means we (i.e. our computer) can
efficiently generate large random primes by just repeatedly generating large random numbers and discarding those
that are not prime.
Comment. Here, ln(x) is the logarithm with base e. Isn't it wonderful how Euler's number e � 2.71828 is
sneaking up on the primes?
Historical comment. Despite progress by Chebyshev (who succeeded in 1852 in showing that the quotient in the
above limit is bounded, for large x, by constants close to 1), the PNT was not proved until 1896 by Hadamard
and, independently, de la Vallée Poussin, who both used new ideas due to Riemann.
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Example 102. Playing with the prime number theorem in Sage:

Sage] prime_pi(10)

4

Sage] plot(prime_pi(x), 2, 200)
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Sage] plot([prime_pi(x),x/ln(x)], 2, 200)
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Sage] plot([prime_pi(x)/(x/ln(x)), 1], 2, 2000)
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Comment. As the final plot suggests, the quotient of �(x) and x/ln(x) indeed approaches 1 from above. This
is slightly stronger than the PNT, which only claims that the quotient approaches 1.
In particular, as the previous plot suggests, for large x, x/ ln(x) is always an underestimate for �(x) (though
looking at a plot like this can be very misleading).
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