
Sketch of Lecture 9 Mon, 2/3/2020

Example 61. (bonus!) The LFSR xn+31�xn+28+xn (mod2) from Example 58, which is used
in glibc, is entirely predictable because observing x1; x2; :::; x31 we know what x32; x33; ::: are
going to be. Alice tries to reduce this predictability by using only x3; x6; x9; ::: as the output of
the LFSR. Demonstrate that this PRG is still perfectly predictable by showing the following:

Challenge. Find a simple LFSR which produces x3; x6; x9; :::

Send me the LFSR, and an explanation how you found it, by 2/16 for a bonus point!

Comment. There is nothing special about this LFSR. Moreover, a generalization of this argument shows that
only outputting every Nth bit of an LFSR is always going to result in an entirely predictable PRG.

A popular way to reduce predictability is to combine several LFSRs (in a nonlinear fashion):

Example 62. Let us consider a baby version of CSS (discussed next class). Our PRG uses the
LFSR xn+3� xn+1+xn (mod 2) as well as the LFSR xn+4�xn+2+xn (mod 2). The output
of the PRG is the output of these two LFSRs added with carry.
Adding with carry just means that we are adding bits modulo 2 but add an extra 1 to the next bits if the sum
exceeded 1. This is the same as interpreting the output of each LFSR as the binary representation of a (huge)
number, then adding these two numbers, and outputting the binary representation of the sum.

If we use (0; 0; 1) as the seed for LFSR-1, and (0; 1; 0; 1) for LFSR-2, what are the �rst 10 bits
output by our PRG?

Solution. With seed 0; 0; 1 LSFR-1 produces 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; :::
With seed 0; 1; 0; 1 LSFR-2 produces 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; :::
We now add these two:

0 1 1 1 0 0 1 0 1 1 ���
+ 0 0 0 1 0 1 0 0 0 1 ���
carry 1 1

0 1 1 0 1 1 1 0 1 0 ���

Hence, the output of our PRG is 0; 1; 1; 0; 1; 1; 1; 0; 1; 0; :::.

Important comment. Make sure you realize in which way this CSS PRG is much less predictable than a single
LFSR! A single LFSR with ` registers is completely predictable since knowing ` bits of output (determines the
state of the LFSR and) allows us to predict all future output. On the other hand, it is not so simple to deduce
the state of the CSS PRG from the output. For instance, the initial (0; 1; :::) output could have been generated
as (0; 0; :::)+ (0; 1; :::) or (0; 1; :::)+ (0; 0; :::) or (1; 0; :::)+ (1; 0; :::) or (1; 1; :::) + (1; 1; :::).
[In this case, we actually don't learn anything about the registers of each individual LFSR. However, we do learn
how their values have to match up. That's the correlation that is exploited in correlation attacks, like the one
described next class for the actual CSS scheme.]

Advanced comment. Is the carry important? Yes! Let a1; a2; ::: and b1; b2; ::: be the outputs of LFSR-1 and
LFSR-2. Suppose we sum without carry. Then the output is a1+ b1; a2+ b2; ::: (with addition mod 2). If Eve
assigns variables k1;k2; :::;k7 to the 3+4 seed bits (the key in the stream cipher), then the output of the combined
LFSR will be linear in these seven variables (because the ai and bi are linear combinations of the ki). Given just
a few more than 7 output bits, a little bit of linear algebra (mod 2) is therefore enough to solve for k1; k2; :::; k7.
On the other hand, suppose we include the carry. Then the output is a1+ b1; a2+ b2+a1b1; ::: (note how a1b1
is 1 (mod2) precisely if both a1 and b1 are 1 (mod2), which is when we have a carry). This is not linear in the
ai and bi (and, hence, not linear in the ki), and we cannot solve for k1; k2; :::; k7 as before.

Armin Straub
straub@southalabama.edu

19

Example 63. In each case, determine if the stream could have been produced by the LFSR
xn+5�xn+2+ xn (mod 2). If yes, predict the next three terms.

(STREAM-1) :::; 1; 0; 0; 1; 1; 1; 1; 0; 1; ::: (STREAM-2) :::; 1; 1; 0; 0; 0; 1; 1; 0; 1; :::

Solution. Using the LFSR, the values 1;0;0;1;1 are followed by 1;1;1;0; ::: Hence, STREAM-1 was not produced
by this LFSR.
On the other hand, using the LFSR, the values 1;1;0;0;0 are followed by 1;1;0;1;1;1;0; ::: Hence, it is possible
that STREAM-2 was produced by the LFSR (for a random stream, the chance is only 1/24=6.25% that 4 bits
matched up). We predict that the next values are 1; 1; 0; :::
Comment. This observation is crucial for the attack on CSS described in Example 64.

Example 64. (CSS) The CSS (content scramble system) is based on 2 LFSRs and used for the
encryption of DVDs. Let us indicate (in a slightly oversimpli�ed way) how to break it.

CSS was introduced in 1996 and �rst compromised in 1999. One big issue is that its key size is 40 bits. Since
240� 1.1 � 1012 is small by modern standards, even a direct brute-force attack in time 240 is possible.
However, we will see below that poor design makes it possible to attack it in time 216.
Historic comment. 40 bits was the maximum allowed by US export limitations at the time.
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States

LFSR-17
17 bits (seed uses 16 bits of key)

¡!1 bit X
mod2

(plus previous carry)

#
1 bit

 ¡1 bit LFSR-25
25 bits (seed uses 24 bits of key)

CSS PRG combines one 17-bit LFSR and one 25-bit LFSR. The bits output by the CSS PRG are the sum of the
bits output by the two LFSRs (this is the usual sum, including carries).
The 40 bit key is used to seed the LFSRs (the 4th bit of each seed is �1�, so we need 16+ 24= 40 other bits).
Here's how we break CSS in time 216:

� If a movie is encrypted using MPEG then we know the �rst few, say x (6-20), bytes of the plaintext.

� As in Example 59, this allows us to compute the �rst x bytes of the CSS keystream.

� We now go through all 216 possibilities for the seed of LFSR-17. For each seed:

� We generate x bytes using LFSR-17 and subtract these from the known CSS keystream.

� This would be the output of LFSR-25. As in Example 63, we can actually easily tell if such an
output could have been produced by LFSR-25. If yes, then we found (most likely) the correct seed
of LFSR-17 and now also have the correct state of LFSR-25.

This kind of attack is known as a correlation attack.
https://en.wikipedia.org/wiki/Correlation_attack

Comment. Similar combinations of LFSRs are used in GSM encryption (A5/1,2, 3 LFSRs); Bluetooth (E0, 4
LFSRs). All of these are broken; so, of course, they shouldn't be used. However, it is di�cult to update things
implemented in hardware:::

Armin Straub
straub@southalabama.edu

20

https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack

