
Sketch of Lecture 5 Fri, 1/24/2020

Example 30. (bonus challenge!) You intercept the following message from Alice:

WHCUHFWXOWHUQXOMOMQVSQWAMWHCUHFXOLNWXQMQVSQWAWMQLN

Your experience tells you that Alice is using a substitution cipher. You also know that this message
contains the word �secret�. Can you crack it?
Note. In modern practice, it is not uncommon to know (or suspect) what a certain part of the message should
be. For instance, PDF �les start with �%PDF� (0x25504446).
See https://en.wikipedia.org/wiki/Magic_number_(programming) for more such instances.

(Send me an email by 1/28 with the plaintext and how you found it to collect a bonus point.)

Example 31. Compute 31003 (mod101).
Solution. Since 101 is a prime, 3100� 1 (mod101) by Fermat's little theorem.
Because 3100� 30 (mod101), this enables us to reduce exponents modulo 100.
In particular, since 1003� 3 (mod100), we have 31003� 33= 27 (mod101).

Euler's theorem

Recall that Fermat's little theorem is just the special case of Euler's theorem :

Theorem 32. (Euler's theorem) If n> 1 and gcd (a; n)= 1, then a�(n)� 1 (modn).
Proof. Euler's theorem can be proved along the lines of our earlier proof of Fermat's little theorem. The only
adjustment is to only start with multiples ka where k is invertible modulo n. There is �(n) such residues k, and
so that's where Euler's phi function comes in. Can you complete the proof? �

Example 33. What are the last two (decimal) digits of 37082?

Solution. We need to determine 37082 (mod100). �(100)= �(2252)= �(22)�(52)= (22¡ 21)(52¡ 51)=40.
Since gcd (3; 100)= 1 and 7082� 2 (mod40), Euler's theorem shows that 37082� 32=9 (mod100).

Binary exponentiation

Example 34. Compute 325 (mod101).
Solution. Fermat's little theorem is not helpful here.
Instead, we do binary exponentiation:
32=9, 34= 81�¡20, 38� (¡20)2= 400�¡4, 316� (¡4)2� 16, all modulo 101
25= 16+8+1 [Every integer n> 0 can be written as a sum of distinct powers of 2 (in a unique way).]

Hence, 325=316 � 38 � 31� 16 � (¡4) � 3=¡192� 10 (mod101).

Example 35. (extra practice) Compute 220 (mod41).
Solution. 22=4, 24= 16, 28= 256� 10, 216� 100� 18. Hence, 220=216 � 24� 18 �16= 288� 1 (mod41).
Or: 25= 32�¡9 (mod41). Hence, 220=(25)4� (¡9)4= 812� (¡1)2=1 (mod41).

Comment. Write a=220 (mod41). It follows from Fermat's little theorem that a2=240� 1 (mod41). The
argument below shows that a��1 (mod41) [but we don't know which until we do the calculation].

The equation x2� 1 (mod p) is equivalent to (x¡ 1)(x+1)� 0 (mod p) [b/c (x¡ 1)(x+1)=x2¡ 1]. Since
p is a prime and pj(x¡ 1)(x+1), we must have pj(x¡ 1) or pj(x+1). In other words, x��1 (mod p).
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Representations of integers in di�erent bases

We are commonly using the decimal system of writing numbers:
1234=4 �100+3 � 101+2 �102+1 � 103:

10 is called the base, and 1; 2; 3; 4 are the digits in base 10. To emphasize that we are using base 10, we will
write 1234=(1234)10. Likewise, we write

(1234)b=4 � b0+3 � b1+2 � b2+1 � b3:

In this example, b > 4, because, if b is the base, then the digits have to be in f0; 1; :::; b¡ 1g.

Example 36. 25= 1 � 24+ 1 � 23+ 0 � 22+ 0 � 21+ 1 � 20. We write 25=(11001)2.

Example 37. Express 49 in base 2.
Solution.

� 49= 24 � 2+ 1 . Hence, 49=(:::1)2 where ::: are the digits for 24.

� 24= 12 � 2+ 0 . Hence, 49=(:::01)2 where ::: are the digits for 12.

� 12=6 � 2+ 0 . Hence, 49= (:::001)2 where ::: are the digits for 6.

� 6=3 � 2+ 0 . Hence, 49=(:::0001)2 where ::: are the digits for 3.

� 3=1 � 2+ 1 , with 1 left over. Hence, 49= (110001)2.

Other bases.
What is 49 in base 3? 49= 16 � 3+ 1 , 16=5 � 3+ 1 , 5=1 � 3+ 2 , 1 . Hence, 49=(1211)3.

What is 49 in base 5? 49= (144)5.
What is 49 in base 7? 49= (100)7.

Example 38. Bases 2, 8 and 16 (binary, octal and hexadecimal) are commonly used in computer
applications.
For instance, in JavaScript or Python, 0b::: means (:::)2, 0o::: means (:::)8, and 0x::: means (:::)16.
The digits 0; 1; :::; 15 in hexadecimal are typically written as 0; 1; :::; 9; A;B;C;D;E; F .
Example. FACE value in decimal? (FACE)16= 15 � 163+ 10 � 162+ 12 � 16+ 14= 64206
Practical example. chmod 664 file.tex (change �le permission)

664 are octal digits, consisting of three bits: 1= (001)2 execute (x), 2= (010)2 write (w), 4= (100)2 read (r)

Hence, 664 means rw,rw,r. What is rwx,rx,-? 750

By the way, a fourth (leading) digit can be speci�ed (setting the �ags: setuid, setgid, and sticky).

Example 39. (terrible jokes, parental guidance advised)
There is I0 types of people ::: those who understand binary, and those who don't.

Of course, you knew that. How about:
There are II types of people::: those who understand Roman numerals, and those who don't.

It's not getting any better:
There are I0 types of people::: those who understand hexadecimal, F the rest :::
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