
Sketch of Lecture 31 Mon, 4/8/2019

Example 176. What is your feeling? Can we make RSA even more secure by allowing N to
factor into more than 2, say, 3 primes?

Solution. That doesn't seem like a good idea. Namely, observe that the security of RSA relies on adversaries
being unable to factor N . Allowing more factors of N (while keeping the size of N �xed) makes that task
easier, because more factors means that the factors are necessarily smaller.

Example 177. RSA has proven to be secure so far. However, it is easy to implement RSA in
such a way that it is insecure. One important but occasionally messed up part of RSA is that p
and q must be unpredictable, and the only way to achieve that is to choose p; q completely
randomly in some huge interval [M1;M2].

� For instance, if N = pq has m digits and we know the �rst (or last) m/4 digits of p,
then we can e�ciently factor N .

An adversary might know many digits of p if, for instance, we make the mistake of generating the
random prime p by considering candidates of the form 10100 + k for small (random) values of k
(10100 has no special signi�cance; it can be replaced with any large number).

� Also, we must use a cryptographically secure PRG to generate p and q.

If using a �bad� PRG or choosing seeds with too little entropy, then (especially among a large number
of public keys generated this way) it becomes likely that (di�erent) public keys N and N 0 share a
prime factor p. In that case, everybody can determine p= gcd(N;N 0) and break both public keys.
Indeed. For instance, in a study of Lenstra et. al., millions of public keys were collected and compared.
Among the RSA moduli, about 0.2% shared a common prime factor with another one. That's
terrible: if (di�erent) public keys N and N 0 share a prime factor p, then everybody can determine
p= gcd(N;N 0) and break both public keys.
http://eprint.iacr.org/2012/064.pdf

� In that direction, is the security of public key cryptosystems like RSA in any way
compromised when used by tens of millions of users?

As noted above, millions of people using �bad� PRGs for generating RSA public keys make it likely
that this weakness can be practically exploited.
Similarly, for Di�e�Hellman and ElGamal, it is common to use �xed primes p. While �ne in principle,
this may be an issue if used by millions of users faced against an adversary Eve with vast resources.
See, for instance: https://threatpost.com/prime-diffie-hellman-weakness-may-be-key-to-breaking-crypto/

Example 178. (side-channel attacks) For instance, by measuring the time it takes to decrypt
messages as m= cd (modN) in RSA, Eve might be able to reconstruct the secret key d.

This timing attack, �rst developed by Paul Kocher (1997), is particularly unsettling because it illustrates that
the security of a system can be compromised even if mathematically everything is sound. This sort of attack
is called a side-channel attack. It attacks the implementation (software and/or hardware) rather than the
cryptographic algorithm.
See Section 6.2.3 in our book for more details on how d can be obtained in this attack.
In a similar spririt, there exist power attacks (measuring power instead of time during decryption) or fault
attacks (for instance, injecting errors during computations):
https://en.wikipedia.org/wiki/Side-channel_attack

How to prevent? Implement RSA in such a way that no inferences can be drawn from the time and power
consumption.

Armin Straub
straub@southalabama.edu

67



Lesson. Do not implement crypto algorithms yourself!! Instead, use one of the well-tested
open implementations.

It's kind of sad, isn't it? Don't come up with your own ciphers. Don't implement ciphers yourself:::
But it is important to realize just how easy it is to implement these algorithms in such a way that security
is compromised (even if the idea, intentions and algorithms are all sound and secure).

After advertising open implementations, let us end this discussion with a cautionary example
in that regard.

Example 179. The following story made lots of headlines in 2016:

https://threatpost.com/socat-warns-weak-prime-number-could-mean-its-backdoored/116104/

After a year, it was noticed that, in the open-source tool Socat (�Netcat++�), the Di�e-
Hellman key exchange was implemented using a hard-coded 1024 bit prime p (nothing wrong
with that), which wasn't prime! Explain how this could be used as a backdoor.

Solution. The security of the Di�e-Hellman key exchange relies on the di�culty of taking discrete logarithms
modulo p. If we can compute x in h= gx (mod p), then we can break the key exchange.
Now, if p= p1p2, then we can use the CRT to �nd x by solving the two (much easier!) discrete logarithm
problems

h= gx (mod p1); h= gx (mod p2):

This is an example of a NOBUS backdoor (�nobody but us�), because the backdoor can only be used by
the person who knows the (secret) factorization of p.
Comment. In the present case, the Socat �prime� p actually has the two small factors 271 and 13597, and
p/(271 �13597) is still not a prime (but nobody has been able to factor it). This might hint more at a foolish
accident than a malicious act.

Important follow-up question. Of course, the issue has been �xed and the composite number has been
replaced by the developers with a large prime. However, should we trust that it really is a prime?
We don't need to trust anyone because primality checking is simple! We can just run the Miller�Rabin test
N times. If the number was composite, there is only a 4¡N chance of us not detecting it. (In OpenSSL, for
instance, N = 40 and the chance for an error, 2¡80, is astronomically low.) Both Fermat and Miller�Rabin
instantly detect the number here to be composite (for certain).
Comment. This illustrates both what's good and what's potentially problematic about open source projects.
The potentially problematic part for crypto is that Eve might be among the people working on the project.
The good part is that (hopefully!�) many experts are working on or looking into the code. Thus, hopefully,
any malicious acts on Eve's part should be spotted soon (in fact, with proper code review, should never
make it into any production version). Of course, this �hope� requires ongoing e�ort on the parts of everyone
involved, and the willingness to fund such projects.
�However, sometimes very few people are involved in a project, despite it being used by millions of users. For
instance, see: https://en.wikipedia.org/wiki/Heartbleed

Armin Straub
straub@southalabama.edu

68



Example 180. (short plaintext attack on RSA) Suppose a 56bit DES key (or any other
short plaintext) is written as a number m� 256� 1016.9 and encrypted as c=me (modN).
Eve makes two lists:

� cx¡e (modN) for x=1; 2; :::; 109

� ye (modN) for x=1; 2; :::; 109

If there is a match between the lists, that is cx¡e= ye (modN), then c=(xy)e (modN) and Eve has learned
that the plaintext is m=xy.
This attack will succeed if m is the product of two integers x, y (up to 109). This is the case for many
integers m.
Another project idea. Quantify how many integers factor into two small factors.
How to prevent? To prevent this attack, the plaintext can be padded with random bits before being
encrypted. Recall that we should actually never use vanilla RSA (unless with random plaintexts) and always
use a securely padded version instead!

Example 181. For RSA, does double (or triple) encryption improve security?

(a) Say, if Bob asks people to send him messages �rst encrypted with a �rst public key
(N; e1) and then encrypted with a second public key (N; e2).

(b) Or, what if Bob asks people to send him messages �rst encrypted with a �rst public
key (N1; e1) and then encrypted with a second public key (N2; e2).

Solution.

(a) No, this does not result in any additional security.
After one encryption, c1=me1 (modN) and the �nal ciphertext is c2= c1

e2 (modN). However, note
that c2=me1e2 (modN), which is the same as encryption with the single public key (N; e1e2).

(b) This adds only a negligible bit of security and hence is a bad idea as well. The reason is that an
attacker able to determine the secret key for (N1; e1) is likely just as able to determine the secret
key for (N2; e2), meaning that the attack would only take twice as long (or two computers). That's
only a tiny bit of security gained, somewhat comparable to increasing N from 1024 to 1025 bits. If
heightened security is wanted, it is better to increase the size of N in the �rst place.
[Make sure you see how the situation here is di�erent from the situation for 3DES.]

Armin Straub
straub@southalabama.edu

69


