
Sketch of Lecture 15 Mon, 2/11/2019

Review. If N is composite, then a residue a is a Fermat liar modulo N if aN¡1�1 (modN).

Example 89. Somewhat suprisingly, there exist composite numbers n with the following
disturbing property: every residue a is a Fermat liar or gcd(a; n)> 1.

This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a;n)) of n (which is exceedingly unlikely for large numbers).
[Recall that, for large numbers, we do not know how to �nd factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes or Carmichael numbers.

The �rst few are 561;1105;1729;2465; ::: (it was only shown in 1994 that there are in�nitely many of them).
These are very rare, however: there are 43 absolute pseudoprimes less than 106. (Versus 78; 498 primes.)

Example 90. Show that 561 is an absolute pseudoprime.

Solution. We need to show that a560� 1 (mod561) for all invertible residues modulo 561.
Since 561=3 � 11 � 17, a560� 1 (mod561) is eqivalent to a560� 1 (mod p) for all of p=3;11; 17.
By Fermat's little theorem, we have a2� 1 (mod3), a10� 1 (mod11), a16� 1 (mod17). Since 2;10; 16 all
divide 560, it follows that indeed a560� 1 (mod p) for p=3;11; 17.
Comment. Korselt's criterion (1899) states that what we just observed in fact characterizes absolute pseudo-
primes. Namely, a composite number n is an absolute pseudoprime if and only if n is square-free, and for all
primes p dividing n, we also have p¡ 1jn¡ 1.

Theorem 91. (Korselt's Criterion) Let n be positive and composite. Then an� a (modn)
holds for any integer a if and only if n is squarefree and (p¡ 1)j(n¡ 1) for any prime divisor
p of n.

[if and only if an¡1� 1 (modn) holds for any integer a with gcd(a; n)= 1]

Proof. Here, we will only the �if� part (the �only if� part is also not hard to show but the typical proof requires
a little more insight into primitive roots than we currently have). In other words, assume that n is squarefree
and (p¡ 1)j(n¡ 1) for any prime divisor p of n. Let a be any integer. We will show that an� a (modn).
n being squarefree means that its prime factorization is of the form n = p1�p2���pd for distinct primes pi
(this is equivalent to saying that there is no integer m > 1 such that m2jn). By Fermat's little theorem
api¡1 � 1 (mod pi) and, since (pi ¡ 1)j(n ¡ 1), an¡1 � 1 (mod pi). But, wait! This is only true if
gcd(a; pi)= 1, that is, a�/ 0 (mod pi). However, in either case (that is, for all a), we get an� a (mod pi).
It then follows by the Chinese remainder theorem that an� a (modn). �
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The Miller�Rabin primality test

The Fermat primality test picks a and checks whether an¡1� 1 (modn).

� If an¡1�/ 1 (modn), then we are done because n is de�nitely not a prime.

� If an¡1� 1 (modn), then either n is prime or a is a Fermat liar.
But instead of leaving o� here, we can dig a little deeper:

Note that a(n¡1)/2 satis�es x2� 1 (modn). If n is prime, then a(n¡1)/2��1 (modn).
[Recall that, if n is composite (and odd), then x2� 1 (modn) has additional solutions!]

� Hence, if a(n¡1)/2�/ �1 (modn), then we again know for sure that n is not a prime.
Advanced comment. In fact, we can now factor n! See bonus challenge below.

� If a(n¡1)/2�1 (modn) and n¡ 1

2
is divisible by 2, we continue and look at a(n¡1)/4 (modn).

¡ If a(n¡1)/4�/ �1 (modn), then n is not a prime.

¡ If a(n¡1)/4� 1 (modn) and n¡ 1
4

is divisible by 2, we continue:::

Write n¡ 1=2s �m with m odd. In conclusion, if n is a prime, then

am� 1 or, for some r=0; 1; :::; s¡ 1; a2
rm�¡1 (modn):

In other words, if n is a prime, then the values am; a2m; :::; a2
sm must be of the form 1; 1; :::; 1 or :::;¡1; 1;

1; :::; 1. If the values are of this form even though n is composite, then a is a strong liar modulo n.

This gives rise to the following improved primality test:

Miller�Rabin primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Write n¡ 1=2s �m with m odd.
Repeat k times:

Pick a random number a from f2; 3; :::; n¡ 2g.
If am�/ 1 (modn) and a2

rm�/ ¡1 (modn) for all r=0; 1; :::; s¡ 1, then
stop and output �not prime�.

Output �likely prime�.

Comment. If n is composite, then less than a quarter of the values for a could possibly be strong liars. In other
words, for any composite number, the odds that the Miller�Rabin test returns �likely prime� are less than 4¡k.
Comment. Note that, though it looks more involved, the Miller�Rabin test is essentially as fast as the Fermat
primality test (recall that, to compute an¡1, we proceed using binary exponentiation).
Advanced comments. This is usually implemented as a probabilistic test. However, assuming GRH (the
generalized Riemann hypothesis), it becomes a deterministic algorithm if we check a= 2; 3; :::; b2(logn)2c.
This is mostly of interest for theoretical applications. For instance, this then becomes a polynomial time
algorithm for checking whether a number is prime.
More recently, in 2002, the AKS primality test was devised. This test is polynomial time (without relying on
outstanding conjectures like GRH).
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Example 92. Suppose we want to determine whether n = 221 is a prime. Simulate the
Miller�Rabin primality test for the choices a= 24, a= 38 and a= 47.
Solution. n¡ 1= 4 � 55=2s �m with s=2 and m= 55.

� For a= 24, we compute am= 2455� 80�/ �1 (mod221). We continue with a2m� 802� 212�/ ¡1,
and conclude that n is not a prime.
Note. We do not actually need to compute that an¡1= a4m�81, which features in the Fermat test
and which would also lead us to conclude that n is not prime.

� For a= 38, we compute am= 3855 � 64�/ �1 (mod221). We continue with a2m� 642� 118�/ ¡1
and conclude that n is not a prime.
Note. This case is somewhat di�erent from the previous in that 38 is a Fermat liar. Indeed, a4m�
1182 � 1 (mod 221). This means that we have found a nontrivial sqareroot of 1. In this case, the
Fermat test would have failed us while the Miller�Rabin test would have succeeded.

� For a= 47, we compute am= 4755� 174�/ �1 (mod221). We continue with a2m� 1742�¡1. We
conclude that n is a prime or a is a strong liar. In other words, we are not sure but are (incorrectly)
leaning towards thinking that 221 was a prime.

Comment. In this example, only 4 of the 218 residues 2;3; :::;219 are strong liars (namely 21;47;174;200).
For comparison, there are 14 Fermat liars (namely 18;21;38;47;64;86;103;118;135;157;174;183;200;203).

Example 93. (bonus challenge) If an¡1� 1 (modn) but a(n¡1)/2�/ �1 (mod n), then we
can �nd a factor of n! How?!
Comment. However, note that this only happens if a is a Fermat liar modulo n, and these are typically very
rare. So, unfortunately, we have not discovered an e�cient factorization algorithm.
But we have run into an idea, which is used for some of the best known factorization algorithms. If time
permits, more on that later:::

Send in a solution by Feb 24 for a bonus point!
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