Example 72. (review) The solutions to $x^2 \equiv 9 \pmod{35}$ are ± 3 and $\pm 17 \pmod{35}$.

Example 73. Determine all solutions to $x^2 \equiv 4 \pmod{105}$.

Solution. By the CRT:

 $\begin{array}{l} x^2 \equiv 4 \pmod{105} \\ \iff x^2 \equiv 4 \pmod{3} \text{ and } x^2 \equiv 4 \pmod{5} \text{ and } x^2 \equiv 4 \pmod{7} \\ \iff x \equiv \pm 2 \pmod{3} \text{ and } x \equiv \pm 2 \pmod{5} \text{ and } x \equiv \pm 2 \pmod{7} \end{array}$

At this point, we see that there is $2^3 = 8$ solutions.

For instance, let us find the solution corresponding to $x \equiv 2 \pmod{3}$, $x \equiv 2 \pmod{5}$, $x \equiv -2 \pmod{7}$:

$$x \equiv 2 \cdot 5 \cdot 7 \cdot \underbrace{[(5 \cdot 7)_{\text{mod }3}^{-1}]}_{-1} + 2 \cdot 3 \cdot 7 \cdot \underbrace{[(3 \cdot 7)_{\text{mod }5}^{-1}]}_{1} - 2 \cdot 3 \cdot 5 \cdot \underbrace{[(3 \cdot 5)_{\text{mod }7}^{-1}]}_{1} \equiv -70 + 42 - 30 = -58 \equiv 47$$

Similarly, we find all eight solutions (note how the solutions pair up):

$\pmod{3}$	$\pmod{5}$	$\pmod{7}$	$\pmod{105}$
2	2	2	2
-2	-2	-2	-2
2	2	-2	47
-2	-2	2	-47
2	-2	2	23
-2	2	-2	-23
-2	2	2	37
2	-2	-2	-37

The complete list of solutions is: $\pm 2, \pm 23, \pm 37, \pm 47$

Silicon slave labor. Once we are comfortable doing it by hand, we can easily let Sage do the work for us:

Sage] crt([2,2,-2], [3,5,7])

47

```
Sage] solve_mod(x^2 == 4, 105)
```

[(37), (82), (58), (103), (2), (47), (23), (68)]

Review: quadratic residues

Definition 74. An integer *a* is a **quadratic residue** modulo *n* if $a \equiv x^2 \pmod{n}$ for some *x*. Important note. Products of quadratic residues are quadratic residues.

Example 75. List all quadratic residues modulo 11.

Solution. We compute all squares: $0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 5$, $(\pm 5)^2 \equiv 3$. Hence, the quadratic residues modulo 11 are 0, 1, 3, 4, 5, 9.

Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why? [*Hint.* $x^2 \equiv y^2 \pmod{p} \iff (x-y)(x+y) \equiv 0 \pmod{p} \iff x \equiv y \text{ or } x \equiv -y \pmod{p}$]

Example 76. List all quadratic residues modulo 15.

Solution. We compute all squares modulo $15: 0^2 = 0$, $(\pm 1)^2 = 1$, $(\pm 2)^2 = 4$, $(\pm 3)^2 = 9$, $(\pm 4)^2 \equiv 1$, $(\pm 5)^2 \equiv 10$, $(\pm 6)^2 \equiv 6$, $(\pm 7)^2 \equiv 4$. Hence, the quadratic residues modulo 15 are 0, 1, 4, 6, 9, 10.

Important comment. Among the $\phi(15) = 8$ invertible residues, the quadratic ones are 1,4 (exactly a quarter). Note that 15 is of the form n = pq with p, q distinct primes.

Theorem 77. Let p, q, r be distinct odd primes.

- The number of invertible residues modulo n is $\phi(n)$.
- The number of invertible quadratic residues modulo p is $\frac{\phi(p)}{2} = \frac{p-1}{2}$.
- The number of invertible quadratic residues modulo pq is $\frac{\phi(pq)}{4} = \frac{p-1}{2} \frac{q-1}{2}$.
- The number of invertible quadratic residues modulo pqr is $\frac{\phi(pqr)}{8} = \frac{p-1}{2} \frac{q-1}{2} \frac{r-1}{2}$.

•

Proof.

- We already knew that the number of invertible residues modulo n is $\phi(n)$.
- Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a² be one of the nonzero quadratic residues. As we observed earlier, x² ≡ a² (mod p) has exactly 2 solutions, meaning that exactly two residues (namely ±a) square to a². Hence, the number of invertible quadratic residues modulo p is half the number of invertible residues modulo p.
- Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues. Let a² be one of the invertible quadratic residues. By the CRT, x² = a² (mod p) has exactly 4 solutions (why is it important that a is invertible here?!), meaning that exactly four residues square to a². Hence, the number of invertible quadratic residues modulo pq is a quarter of the number of invertible residues modulo pq.
- Spell out the situation modulo *pqr*!

Comment. Make similar statements when one of the primes is equal to 2.

Example 78. (bonus!) What is the total number of quadratic residues modulo pqr if p, q, r are distinct odd primes? (due 2/10)

The Blum-Blum-Shup PRG

(Blum-Blum-Shub PRG) Let M = pq where p, q are large primes $\equiv 3 \pmod{4}$. From the seed y_0 , we generate $y_{n+1} \equiv y_n^2 \pmod{M}$. The random bits x_n we produce are $y_n \pmod{2}$ (i.e. $x_n = \text{least bit of}(y_n)$).

Comments next class.

Example 79. Generate random bits using the B-B-S PRG with M = 77 and seed 3.

Solution. With $y_0 = 3$, we have $y_1 \equiv y_0^2 = 9$, followed by $y_2 \equiv y_1^2 \equiv 4 \pmod{77}$, $y_3 \equiv 16$, $y_4 \equiv 25$, $y_5 \equiv 9$, so that the values y_n now start repeating.

These numbers are, however, not the output of the PRG. We only output the least bit of the numbers y_n , i.e. the value of $y_n \pmod{2}$. For $y_1 \equiv 9$ we output 1, for $y_2 \equiv 4$ we output 0, for $y_3 \equiv 16$ we output 0, for $y_4 \equiv 25$ we output 1, and so on.

In other words, the seed 3 produces the sequence 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, ... of period 4.

Comment. Note that it was completely to be expected that the numbers repeat. In fact, we immediately see that the number of possible y_n is at most the number of invertible quadratic residues, of which there are only $\phi(77)/4 = 15$.