
Sketch of Lecture 12 Mon, 2/4/2019

Example 72. (review) The solutions to x2� 9 (mod 35) are �3 and �17 (mod35).

Example 73. Determine all solutions to x2� 4 (mod105).
Solution. By the CRT:

x2� 4 (mod105)
() x2� 4 (mod3) and x2� 4 (mod5) and x2� 4 (mod7)
() x��2 (mod3) and x��2 (mod5) and x��2 (mod7)

At this point, we see that there is 23=8 solutions.
For instance, let us �nd the solution corresponding to x� 2 (mod3), x� 2 (mod5), x�¡2 (mod7):

x� 2 � 5 � 7 � [(5 � 7)mod 3
¡1 ]

¡1

+2 � 3 � 7 � [(3 � 7)mod 5
¡1 ]

1

¡ 2 � 3 � 5 � [(3 � 5)mod 7
¡1 ]

1

�¡70+ 42¡ 30=¡58� 47

Similarly, we �nd all eight solutions (note how the solutions pair up):

(mod 3) (mod 5) (mod 7) (mod 105)
2 2 2 2
¡2 ¡2 ¡2 ¡2
2 2 ¡2 47
¡2 ¡2 2 ¡47
2 ¡2 2 23
¡2 2 ¡2 ¡23
¡2 2 2 37
2 ¡2 ¡2 ¡37

The complete list of solutions is: �2;�23;�37;�47

Silicon slave labor. Once we are comfortable doing it by hand, we can easily let Sage do the work for us:

Sage] crt([2,2,-2], [3,5,7])

47

Sage] solve_mod(x^2 == 4, 105)

[(37); (82); (58); (103); (2); (47); (23); (68)]

Review: quadratic residues

De�nition 74. An integer a is a quadratic residue modulo n if a�x2 (modn) for some x.
Important note. Products of quadratic residues are quadratic residues.

Example 75. List all quadratic residues modulo 11.
Solution. We compute all squares: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2� 5, (�5)2� 3. Hence,
the quadratic residues modulo 11 are 0; 1; 3; 4; 5; 9.
Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?
[Hint. x2� y2 (mod p) () (x¡ y) (x+ y)� 0 (mod p) () x� y or x�¡y (mod p)]

Example 76. List all quadratic residues modulo 15.
Solution. We compute all squares modulo 15: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2�1, (�5)2�10,
(�6)2� 6, (�7)2� 4. Hence, the quadratic residues modulo 15 are 0; 1; 4; 6; 9; 10.
Important comment. Among the �(15)=8 invertible residues, the quadratic ones are 1;4 (exactly a quarter).
Note that 15 is of the form n= pq with p; q distinct primes.
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Theorem 77. Let p; q; r be distinct odd primes.

� The number of invertible residues modulo n is �(n).

� The number of invertible quadratic residues modulo p is �(p)

2
=

p¡ 1
2

.

� The number of invertible quadratic residues modulo pq is �(pq)

4
=

p¡ 1
2

q¡ 1
2

.

� The number of invertible quadratic residues modulo pqr is �(pqr)

8
=

p¡ 1
2

q¡ 1
2

r¡ 1
2

.

� :::

Proof.

� We already knew that the number of invertible residues modulo n is �(n).

� Think about squaring all residues modulo p to make a complete list of all quadratic residues. Let a2 be
one of the nonzero quadratic residues. As we observed earlier, x2�a2 (modp) has exactly 2 solutions,
meaning that exactly two residues (namely�a) square to a2. Hence, the number of invertible quadratic
residues modulo p is half the number of invertible residues modulo p.

� Again, think about squaring all residues modulo pq to make a complete list of all quadratic residues.
Let a2 be one of the invertible quadratic residues. By the CRT, x2�a2 (modp) has exactly 4 solutions
(why is it important that a is invertible here?!), meaning that exactly four residues square to a2.
Hence, the number of invertible quadratic residues modulo pq is a quarter of the number of invertible
residues modulo pq.

� Spell out the situation modulo pqr! �

Comment. Make similar statements when one of the primes is equal to 2.

Example 78. (bonus!) What is the total number of quadratic residues modulo pqr if p; q; r
are distinct odd primes? (due 2/10)

The Blum-Blum-Shup PRG

(Blum-Blum-Shub PRG) Let M = pq where p; q are large primes � 3 (mod 4).

From the seed y0, we generate yn+1� yn2 (modM).

The random bits xn we produce are yn (mod 2) (i.e. xn= least bit of(yn)).

Comments next class.

Example 79. Generate random bits using the B-B-S PRG with M = 77 and seed 3.
Solution. With y0=3, we have y1� y0

2=9, followed by y2� y1
2� 4 (mod77), y3� 16, y4� 25, y5� 9, so

that the values yn now start repeating.
These numbers are, however, not the output of the PRG. We only output the least bit of the numbers yn,
i.e. the value of yn (mod 2). For y1� 9 we output 1, for y2� 4 we output 0, for y3� 16 we output 0, for
y4� 25 we output 1, and so on.
In other words, the seed 3 produces the sequence 1; 0; 0; 1; 1; 0; 0; 1; 1; 0; ::: of period 4.
Comment. Note that it was completely to be expected that the numbers repeat. In fact, we immediately
see that the number of possible yn is at most the number of invertible quadratic residues, of which there are
only �(77)/4= 15.
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