
Sketch of Lecture 4 Mon, 1/14/2019

Example 23. (bonus challenge!) Eve, can you crack the following message?

ZOHCAOSDCXKORXSCRKM

Word on the street is that Alice was using the Vigenere cipher with a key of size 2.
(Send me an email by 1/20 with the plaintext and how you found it to collect a bonus point.)

Example 24. The challenge from Example 22 was encrypted using a shift cipher. The key
space has size 26, so a brute-force attack results in immediate success: we �nd that k = 13
(ROT13!) and that the plaintext is WELCOME TO CRYPTO.
This is the worst kind of vulnerability: we successfully mounted a ciphertext only attack.
That is, just knowing the encrypted message, we were able to decrypt it (and discover the key that was used).

Attacks

So far, we considered the weakest kind of attack only: namely, a ciphertext only attack. And,
even then, the historical ciphers prove to be terribly insecure.
However, we need to also worry about attacks where our enemy has additional insight.

� In a known plaintext attack, the enemy somehow has knowledge of a plaintext-ciphertext pair (m;c).

� In a chosen plaintext attack, the enemy can, herself, compute c = E(m) for a chosen plaintext m
(�gained some sort of access to our encryption device�).

� In a chosen ciphertext attack, the enemy can, herself, compute m=D(c) for a chosen ciphertext c
(�gained some sort of access to our decryption device�).

There exist many variations of these. Sometimes, the attacker can make several choices (maybe even adap-
tively), sometimes she only has partial information.

Example 25. Alice sends the ciphertext BKNDKGBQ to Bob. Somehow, Eve has learned
that Alice is using the Vigenere cipher and that the plaintext is AL LCLEAR. Next day,
Alice sends the messageDNF FQGE. Crack it and �gure out the key that Alice used! (What
kind of attack is this?)
Solution. This is a known plaintext attack.
Since m+k= c (to be interpreted characterwise, modulo 26, and with k repeated as necessary), we can �nd
k simply as k= c¡m.
For instance, since A (value 0!) got encrypted to B, the �rst letter of the key is B.

c B K N D K G B Q
m ¡ A L L C L E A R
k = B Z C B Z C B Z

We conclude that the key is k=BZC. Now, we can decrypt any future message that Alice sends using this
key. For instance, we easily decrypt DNFFQGE to CODERED (using m= c¡ k).

All of the historical ciphers we have seen, including the substitution cipher below, fall apart
completely under a known plaintext attack.

Example 26. (substitution cipher) In a substitution cipher, the key k is some permutation
of the letters A;B; :::; Z. For instance, k=FRA:::. Then we encrypt A!F , B!R, C!A
and so on. How large is the key space?
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Solution. Key space has size 26! � 1026.6 � 288.4, so a key can be stored using 89 bits. That's actually a
fairly large key space (for instance, DES has a key size of 56 bits only). Too large to go through by brute force.
However, still easy to break. Since each letter is always replaced with the same letter, this cipher is
susceptible to a frequency attack, exploiting that certain letters (and, more generally, letter combinations!)
occur much more frequently in, say, English text than others. For instance, Lewand's book on Cryptology
lists the following frequencies:
E: 12.7%, T: 9.1%, A: 8.2%, O: 7.5%, I: 7%, N: 6.7%, S: 6.3%, H: 6.1%, R: 6%, D: 4.3%, L: 4%, C: 2.8%, :::
The rarest letters are Q and Z with a frequency of about 0.1% only. (The exact frequencies and precise
ordering various between di�erent sources and the body of text that the frequencies were obtained from.)
The most common letter pairs (digrams) are TH HE AN RE ER IN ON AT ND ST ES EN OF TE ED OR
TI HI AS TO.
More information at: https://en.wikipedia.org/wiki/Letter_frequency
Comment. Note that the frequencies and even the ranking depend considerably on the source of text. For
instance, using government telegrams, a military resource lists EN followed by RE, ER as the most frequent
digrams. That same manual suggests SENORITA as a mnemonic to remember the most frequent letters.
http://www.umich.edu/~umich/fm-34-40-2/ (Field Manual 34-40-2, Department of the Army, 1990)

Example 27. It seems convenient to add the space as a 27th letter in the historic encryption
schemes. Can you think of a reason against doing that?
In most texts, the space occurs more frequently and more regularly than any other letter. Adding it to the
encryption schemes would make them even more susceptible to attacks.

Fermat's little theorem

Example 28. (warmup) What a terrible blunder::: Explain what is wrong!

(incorrect!) 109� 32=9� 2 (mod 7)

Solution. 109= 10 �10 � ::: � 10� 3 � 3 � ::: � 3= 39. Hence, 109� 39 (mod7).
However, there is no reason, why we should be allowed to reduce the exponent by 7 (and it is incorrect).
Corrected calculation. 32� 2, 34� 4, 38� 16� 2. Hence, 39=38 � 31� 2 � 3�¡1 (mod7).
By the way, this approach of computing powers via exponents that are 2; 4; 8; 16; 32; ::: is called binary
exponentiation. It is crucial for e�ciently computing large powers.
Corrected calculation (using Fermat). 36� 1 just like 30=1. Hence, we are allowed to reduce exponents
modulo 6. Hence, 39� 33�¡1 (mod7).

Theorem 29. (Fermat's little theorem) Let p be a prime, and suppose that p - a. Then

ap¡1� 1 (mod p):

Proof. (beautiful!) Since a is invertible modulo p, the �rst p¡ 1 multiples of a,

a; 2a; 3a; :::; (p¡ 1)a

are all di�erent modulo p. Clearly, none of them is divisible by p.
Consequently, these values must be congruent (in some order) to the values 1; 2; :::; p¡ 1 modulo p. Thus,

a � 2a � 3a � ::: � (p¡ 1)a� 1 � 2 � 3 � ::: � (p¡ 1) (mod p):

Cancelling the common factors (allowed because p is prime!), we get ap¡1� 1 (mod p). �
Remark. The �little� in this theorem's name is to distinguish this result from Fermat's last theorem that
xn+ yn= zn has no integer solutions if n> 2 (only recently proved by Wiles).
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