
Sketch of Lecture 32 Wed, 4/11/2018

Example 170. (chosen ciphertext attack on RSA) Show that RSA is not secure under a
chosen ciphertext attack.
First of all, let us recall that in a chosen ciphertext attack, Eve has some access to a decryption device. In
the present case, we mean the following: Eve is trying to determine m from c. Clearly, we cannot allow her
to use the decryption device on c (because then she has m and nothing remains to be said). However, Eve
is allowed to decrypt some other ciphertext c0 of her choosing (hence, �chosen ciphertext�).
You may rightfully say that this is a strange attacker, who can decrypt messages except the one of particular
interest. This model is not meant to be realistic; instead, it is important for theoretical security considerations:
if our cryptosystem is secure against this (adaptive) version of chosen ciphertext attacks, then it is also secure
against any other reasonable chosen ciphertext attacks.

Solution. RSA is not secure under a chosen ciphertext attack:
Suppose c=me (modN) is the ciphertext for m.
Then, Eve can ask for the decryption m0 of c0 = 2ec (mod N). Since c0 = (2m)e (mod N), Eve obtains
m0� 2m, from which she readily determines m=2¡1m0 (modN).
Comment. On the other hand, RSA-OAEP is provably secure against chosen ciphertext attacks. Recall that,
in this case, m is padded prior to encryption. As a result, 2m or, more generally am, is not going to be a
valid plaintext.

Example 171. What we just exploited is that RSA is multiplicatively homomorphic.
Multiplicatively homomorphic means the following: suppose m1 and m2 are two plaintexts with ciphertexts
c1 and c2. Then, (the residue) m1m2 has ciphertext c1c2.
[That is, multiplication of plaintexts translates to multiplication of ciphertexts, and vice versa. Mathemati-
cally, this means that the map m! c is a homomorphism (with respect to multiplication).]
Indeed, for RSA, c1=m1

e and c2=m2
e, so that c1c2=m1

em2
e=(m1m2)

e (modN) is the ciphertext form1m2.
Why care? In our previous example, being multiplicatively homomorphic was a weakness of RSA (which is
�cured� by RSA-OAEP). However, there are situations where homomorphic ciphers are of practical interest.
With a homomorphic cipher, we can do calculations using just the ciphertexts without knowing the plaintexts
(for instance, the ciphertexts could be encrypted (secret) votes, which could be publicly posted; then anyone
could add up (in an additively homomorphic system) these votes into a ciphertext of the �nal vote count; the
advantage being that we don't need to trust an authority for that count). The search for a fully homomorphic
encryption scheme is a hot topic. For a nice initial read, you can �nd more at:
https://blog.cryptographyengineering.com/2012/01/02/very-casual-introduction-to-fully/

Example 172. (chosen ciphertext attack on ElGamal) Show that ElGamal is not secure
under a chosen ciphertext attack.
Solution. Recall, again, that in a chosen ciphertext attack, Eve is trying to determine m from c and Eve has
access to a decryption device, which she can use, except not to the ciphertext c in question.
Suppose c = (c1; c2) = (gy; gxym) is the ciphertext for m. Then (c1; 2c2) = (gy; gxy2m) is a ciphertext
for 2m. Hence, Eve can ask for the decryption of c0= (c1; 2c2), which gives her m0= 2m, from which she
determines m=2¡1m0 (mod p).

In fact, again, the reason that ElGamal is not secure under a chosen ciphertext attack is that
it is multiplicatively homomorphic.

Example 173. (homework) Show that ElGamal is multiplicatively homomorphic.
Solution. Let (gy1; gxy1m1) be a ciphertext for m1, and (gy2; gxy2m2) a ciphertext for m2.

The product (component-wise) of the ciphertexts is (gy1+y2; gx(y1+y2)m1m2), which is a ciphertext for
m1m2. So, again, the product of ciphertexts corresponds to the product of plaintexts.

Armin Straub
straub@southalabama.edu

68



A quick summary of some aspects of RSA and ElGamal.

� As long as appropriate key sizes are used, both RSA and ElGamal appear secure.
About the same key size needed for both: at least 1024 bits. By now, maybe 2048 bits.

� The security of both RSA and ElGamal can be compromised by using a cryptographically
insecure PRG to generate the secret pieces p; q (for RSA) or x (for ElGamal).

� It is important to have di�erent ciphers, especially ones that rely on the di�culty of
di�erent mathematical problems.
Comment. Factoring N = pq and computing discrete logarithms modulo p are the two di�erent
problems for RSA and ElGamal, respectively. It is not known whether the ability to solve one of
them would make it signi�cantly easier to also solve the other one. However, historically, advances
in factorization methods (like the number �eld sieve) have subsequently lead to similar advances in
computing discrete logarithms. Both problems seem of comparable di�culty.

� Both are multiplicatively homomorphic, but RSA looses this property when padded.

Example 174. (common modulus attack on RSA) Bob's public RSA key is (N;e). However,
when Alice requests this public key from Bob, her message gets intercepted by Eve who instead
sends (N; e2) back to Alice, where e2 di�ers from e in only one bit. Alice uses (N; e2) to
encrypt her message and sends c2 to Bob. Of course, Bob fails to decrypt Alice's message and
so resends his public key to Alice (this time, Eve doesn't intervene). Alice now uses (N; e) to
encrypt her message and send c to Bob.
Show that Eve can �gure out the plaintext from c and c2!!
Solution. Eve knows c�me (modN) as well as c2�me2 (modN).
The crucial observation is that cxc2

y�mexme2y=mex+e2y (modN). Eve can choose any x and y.
She knows m if she can arrange x and y such that ex+ e2y=1.
Since e ¡ e2 = �2r, we have gcd(e; e2) = 1 (why?!). Hence, Eve can indeed �nd such x and y using the
extended Euclidean algorithm.
Comment. From a practical point of view, we can argue that, if Eve can trick Alice into using a modi�ed
version of Bob's public key, then she might as well give a completely new public key (that Eve created) to
Alice, in which case she can immediately decipher c2. That's certainly true. However, that way, Eve's malicious
intervention would be plainly visible as such.

Application: hash functions

A hash function H is a function, which takes an input x of arbitrary length, and produces an
output H(x) of �xed length, say, b bit.

Example 175. (error checking) When Alice sends a long messagem to Bob over a potentially
noisy channel, she also sends the hash H(m). Bob, who receives m0 (which, he hopes is m)
and h, can check whether H(m0)= h.
Comment. This only protects against accidental errors inm (much like the check digits in credit card numbers
we discussed earlier). If Eve intercepts the message (m;H(m)), she can just replace it with (m0;H(m0)) so
that Bob receives the message m0.
Eve's job can be made much more di�cult by sending m and H(m) via two di�erent channels. For instance,
in software development, it is common to post hashes of �les on websites (or announce them otherwise),
separately from the actual downloads. For that use case, we should use a one-way hash (see next example).

� The hash function H(x) is called one-way if, given y, it is computationally infeasible
to compute m such that H(m)= y. [Also called preimage-resistant.]

Armin Straub
straub@southalabama.edu

69



This makes the hash function (weakly) collision-resistant in the sense that given a message m it is
di�cult to �nd a second message m0 such that H(m) =H(m0). [Also called second preimage-
resistant.]

� It is called (strongly) collision-resistant if it is computationally infeasible to �nd two
messages m1;m2 such that H(m1)=H(m2).

Comment. Every hash function must have many collisions. On the other hand, the above require-
ment says that �nding even one must be exceedingly di�cult.

Example 176. (error checking, cont'd) Alice wants to send a message m to Bob. She wants
to make sure that nobody can tamper with the message (maliciously or otherwise). How can
she achieve that?
Solution. She can use a one-way hash function H, send m to Bob, and publish (or send via some second
route) y=H(m). Because H is one-way, Eve cannot �nd a value m0 such that H(m0)= y.

Some applications of hash functions include:

� error-checking: send m and H(m) instead of just m

� tamper-protection: send m and H(m) via di�erent channels (H must be one-way!)

If H is one-way, then Eve cannot �nd m0 such that H(m0)=H(m), so the cannot tamper with m
without it being detected.

� password storage: discussed later (there are some tricky bits)

� digital signatures: more later

� blockchains: used, for instance, for cryptocurrencies such as Bitcoin

Some popular hash functions:
published output bits comment

CRC32 1975 32 not secure but common for checksums
MD5 1992 128 common; used to be secure (now broken)
SHA-1 1995 160 common; used to be secure (collision found in 2017)
SHA-2 2001 256/512 considered secure
SHA-3 2015 arbitrary considered secure

� CRC is short for Cyclic Redundancy Check. It was designed for protection against common trans-
mission errors, not as a cryptographic hash (for instance, CRC is a linear function).

� SHA is short for Secure Hash Algorithm and (like DES and AES) is a federal standard selected by
NIST. SHA-2 is a family of 6 functions, including SHA-256 and SHA-512 as well as truncations of these.
SHA-3 is not meant to replace SHA-2 but to provide a di�erent alternative (especially following
successful attacks on MD5, SHA-1 and other hash functions, NIST initiated an open competition for
SHA-3 in 2007). SHA-3 is based on Keccak (like AES is based on Rijndael; Joan Daemen involved in
both). Although the ouput of SHA-3 can be of arbitrary length, the number of security bits is as for
SHA-2.
https://en.wikipedia.org/wiki/NIST_hash_function_competition

� MD is short for Message Digest. These hash functions are due to Ron Rivest (MIT), the �R� in RSA.
Collision attacks on MD5 can now produce collisions within seconds. For a practical exploit, see:
https://en.wikipedia.org/wiki/Flame_(malware)

MD6 was submitted as a candidate for SHA-3, but later withdrawn.

Armin Straub
straub@southalabama.edu

70


