
Sketch of Lecture 24 Mon, 3/12/2018

Review. x (modn) is a primitive root.

() The (multiplicative) order of x (modn) is �(n). (That is, the order is as large as possible.)

() x; x2; :::; x�(n) is a list of all invertible residues modulo n.

Example 131. Determine the orders of each (invertible) residue modulo 7. In particular,
determine all primitive roots modulo 7.

Solution. First, observe that, since �(7)= 6, the orders can only be 1; 2; 3; 6. Indeed:

residues 1 2 3 4 5 6
order 1 3 6 3 6 2

The primitive roots are 3 and 5.

Lemma 132. Suppose x (modn) has (multiplicative) order k.

(a) xa� 1 (modn) if and only if k ja.

(b) xa�xb (modn) if and only if a� b (mod k).

(c) xa has order k

gcd(k; a) .

Proof.

(a) �=)�: By Lemma 127, xk�1 and xa�1 imply xgcd(k;a)�1 (modn). Since k is the smallest exponent,
we have k= gcd(k; a) or, equivalently, kja.
�(=�: Obviously, if k ja so that a= kb, then xa=(xk)b� 1 (modn).

(b) Since x is invertible, xa�xb (modn) if and only if xa¡b� 1 (modn) if and only if kj(a¡ b).

(c) By the �rst part, (xa)m� 1 (modn) if and only if k jam. The smallest such m is m=
k

gcd(k; a) . �

Example 133. Redo Example 131, starting with the knowledge that 3 is a primitive root.

Solution.

residues 1 2 3 4 5 6

3a 30 32 31 34 35 33

order= 6
gcd(a; 6)

6
6

6
2

6
1

6
2

6
1

6
3

Armin Straub
straub@southalabama.edu

50



RSA and public key cryptography

� So far, our symmetric ciphers required a single private key k, a secret shared between
the communicating parties.
That leaves the di�cult task of how to establish such private keys over a medium like the internet.

� In public key cryptosystems, there are two keys ke, kd, one for encryption and one
for decryption. Bob keeps kd secret (from anyone else!) and shares ke with the world.
Alice (or anyone else) can then send an encrypted message to Bob using ke. However,
Bob is the only who can decrypt it using kd.
It is crucial that the key kd cannot be (easily) constructed from ke.

RSA is one the �rst public key cryptosystems.
� It was described by Ron Rivest, Adi Shamir, and Leonard Adleman in 1977. (Note the initials!)

� However, a similar system had already been developed in 1973 by Cli�ord Cocks for the UK intelligence
agency GCHQ (classi�ed until 1997). Even earlier, in 1970, his colleague James Ellis was likely the
�rst to discover public key cryptography.

Example 134. Let us emphasize that it should be surprising that something like public key
cryptography is even possible.
Imagine Alice, Bob and Eve sitting at a table. Everything that is being said is heard by all three of them.
The three have never met before and share no secrets. Should it be possible in these circumstances that Alice
and Bob can share information without Eve also learning about it?
Public key cryptography makes exactly that possible!

(RSA encryption)

� Bob chooses secret primes p; q.

� Bob chooses e (and then computes d) such that de� 1 (mod (p¡ 1)(q¡ 1)).

� Bob makes N = pq and e public. His (secret) private key is d.

� Alice encrypts c=me (modN).

� Bob decrypts m= cd (modN ).

Does decryption always work? What Bob computes is cd� (me)d=mde (modN). It follows from Euler's
theorem and de� 1 (mod �(N)) that mde�m (mod �(N)) for all invertible residues m. It is not quite so
obvious that this actually works for all residues. We will prove this next time.
Is that really secure? Well, if implemented correctly (we will discuss potential issues), RSA has a good
track record of being secure. Next class, we will actually prove that �nding the secret key d is as di�cult
as factoring N (which is believed, but has not been proven, to be hard). On the other hand, it remains an
important open problem whether knowing d is actually necessary to decrypt a given message.

Example 135. (homework) If N = 77, what is the smallest (positive) choice for e?

Solution. (�nal answers only) Technically, e=1 works but then we wouldn't be encrypting at all.
Note that e must be invertible modulo �(N)= 6 � 10= 60. Hence, e=2; 3; 4; 5; 6 are not allowed.
The smallest possible choice for e therefore is e=7.
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