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AES

Finite �elds

Example 112. We have already seen xor in several cryptosystems. Note that a single xor
operation as in the one-time pad or stream ciphers provides no di�usion.

When designing a cipher it may be nice to replace xor of N bit blocks with an operation that
does provide some di�usion.

� A tiny amount of di�usion is provided by instead using addition modulo 2N.
Due to carries, one bit �ip in the input can propagate to more than one bit �ipped in the output.

� More di�usion can be achieved using operations (multiplication/inversion) in �nite �elds like GF(2N).
[We only need to make sure in our design that we don't multiply with zero.]

A �eld is a set of elements which can be added/subtracted as well as multiplied/divided by
according to the usual rules.
In particular, a �eld always has distinguished elements 0 and 1, which are the neutral elements with respect
to addition and multiplication, respectively.

Example 113. The rational numbers Q, the real numbers R, and the complex numbers C all
are �elds, which you have seen before. They contain in�nitely many elements.

Cryptographic applications require �nite structures. Correspondingly, our focus will be on �nite
�elds, that is, �elds consisting of only a �nite number of elements.

Example 114. Let p be a prime. The residues modulo p form a �eld, often denoted as GF(p).
GF is short for Galois �eld, which is another word for �nite �eld.
Note that we can divide by any element! (Except the zero residue but, of course, we can never divide by 0).

Example 115. The residues modulo 21 (or any other composite number) are not a �eld.

We can add/subtract and multiply these numbers, but we cannot always divide. Speci�cally, we cannot divide
by elements like 3; 6; 7; ::: even though these are nonzero (we can, of course, never divide by zero).
Note. We have already seen that this seemingly slight de�ciency has �terrible� consequences. For instance,
the quadratic equation x2=1 has more than the two solutions x=�1 modulo 21 (namely, �8 as well).

AES is built upon byte operations (in contrast to DES, which is built on bit operations). Each
of the 28 bytes represents one of the 28 elements of the �nite �eld GF(28).
Note. We do not yet know what GF(28) is. It cannot be the residues modulo 28, because we just observed
that the residues modulo n are a �eld only of n is prime.

To construct the �nite �eld GF(pn) of pn elements, we can do the following:

� Fix a polynomial m(x) of degree n, which cannot be factored modulo p.

� The elements of GF(pn) are polynomials modulo m(x) modulo p.
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Irreducible mod p? A polynomial is irreducible modulo p if and only if it cannot be factored modulo p.
For instance, the polynomial x2+2x+1 can always be factored as (x+1)2.
For the polynomials m(x)= x2+ x+1 things are more interesting:

� x2+x+1 cannot be factored over Q because the roots ¡1� ¡3
p

2
are not rational.

� However, x2+x+1� (x+2)2 modulo 3, so it can be factored modulo 3.

� On the other hand, x2+ x+1 is irreducible modulo 2 (that is, it cannot be factored: the only linear
factors are x and x+1, but x2, x(x+1) and (x+1)2 are all di�erent from x2+ x+1 modulo 2).

Comment. Actually, all �nite �elds can be constructed in this fashion. Moreover, choosing di�erent m(x)
to construct GF(pn) does not really matter: the resulting �elds are always isomorphic (i.e. work in the same
way, although the elements are represented di�erently). That justi�es writing down GF(pn), since there is
exactly one such �eld.

Example 116. AES is based on representing bytes as elements of the �eld GF(28). It is
constructed using the polynomial x8+ x4+ x3+x+1 (which is indeed irreducible mod 2).

Example 117. As seen above, the polynomial x2+ x+ 1 is irreducible modulo 2, so we can
use it to construct the �nite �eld GF(22) with 4 elements.

(a) List all 4 elements, and make an addition table. Then realize that this is just xor.

(b) Make a multiplication table.

(c) What is the inverse of x+1?

Solution.

(a) The four elements are 0; 1; x; x+1.
For instance, (x+1)+ x=2x+1=1 (in GF(22), since we are working modulo 2). The full table is
below.
Each of the four elements is of the form ax+ b, which can be represented using the two bits ab (for
instance, (10)2 represents x and (11)2 represents x+1).
Then, addition of elements ax+ b in GF(22) works in the same way as xoring bits ab.

(b) For instance, (x+1)2= x2+2x+1�x2+1�x.
The key to realize is that reducing modulo x2 + x + 1 is the same as saying that x2 = ¡x ¡ 1,
i.e. x2 = x + 1 in GF(22). That means all polynomials of degree 2 and higher can be reduced to
polynomials of degree less than 2.

+ 0 1 x x+1
0 0 1 x x+1
1 1 0 x+1 x
x x x+1 0 1
x+1 x+1 x 1 0

� 0 1 x x+1
0 0 0 0 0
1 0 1 x x+1
x 0 x x+1 1
x+1 0 x+1 1 x

(c) We are looking for an element y such that y(x+1)=1 in GF(22). Looking at the table, we see that
y=x has that property. Hence, (x+1)¡1=x in GF(22).
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