Sketch of Lecture 13 Fri, 2/9/2018

Theorem 81. —1 is a quadratic residue modulo (an odd prime) p if and only if p=1 (mod4).
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In other words, the quadratic congruence 2= —1 (mod p) has a solution if and only if p=1 (mod4).

Solution. Let us first see that p=1 (mod4) is necessary. Assume z°= —1 (mod p). Then, by Fermat's little
theorem, 27~ 1 =1 (mod p). On the other hand, 27~ 1= (22)(P~1/2=(—1)(P=1)/2 (mod p). We therefore
need (—1)(P~1/2 =1, which is equivalent to (p — 1) /2 being even. Which is equivalent to p=1 (mod 4).
(Make sure that's absolutely clear!)

On the other hand, assume that p = 1 (mod 4). We will show that = = (
2?2=—1 (mod p). Indeed,

[(1921)]2: (_1)<p1>/2(1.2 : ,,,.1)21>2: (£1)- (£2) - ...- (ip21> =-1 (modp).

[Here, (£1)- (£2)-- is short for 1-(—1)-2-(—2)---.] For the final congruence, observe that 4+-1,+2, ..., +£% 5 !

is a complete set of all nonzero residues. When multiplying all residues, each will cancel with its (modular)
inverse, except the ones that are their own inverse. But a-a =1 (mod p) has only the solution a = +1, so
that +1 are the only residues not canceling.

id g ! )! has the property that

Comment. The final step of our argument is known as Wilson's congruence: (p — 1)!=—1 (mod p).

Primality testing

Recall that it is extremely difficult to factor large integers (this is the starting point for many
cryptosystems). Surprisingly, it is much simpler to tell if a number is prime.

Example 82. The following is the number from Example 80, for which RSA Laboratories, until
2007, offered $100,000 to the first one to factorize it. Nobody has been able to do so to this day.

Has the thought crossed your mind that the challengers might be tricking everybody by chosing M to be
a huge prime that cannot be factored further? Well, we'll talk more about primality testing soon. But we
can actually quickly convince ourselves that M cannot be a prime. If M was prime then, by Fermat's little
theorem, 2 ~1=1 (mod M). Below, we compute 2" —1 (mod M) and find that 2 ~1=£1 (mod M). This
proves that M is not a prime. It doesn't bring us any closer to factoring it though.

Comment. Ponder this for a while. We can tell that a number is composite without finding its factors. Both
sides to this story (first, being able to efficiently tell whether a number is prime, and second, not being able
to factor large numbers) are of vital importance to modern cryptography.

Sage] rsa = Integer("135066410865995223349603216278805969938881475605667027524485143851\
526510604859533833940287150571909441798207282164471551373680419703\
964191743046496589274256239341020864383202110372958725762358509643\
110564073501508187510676594629205563685529475213500852879416377328\
533906109750544334999811150056977236890927563")

Sage] power_mod(2, rsa-1, rsa)

12093909443203361586765059535295699686754009846358895123890280836755673393220205933853\
34853414711666284196812410728851237390407107713940535284883571049840919300313784787895\
22602961512328487951379812740630047269392550033149751910347995109663412317772521248297\
950196643140069546889855131459759160570963857373851

Comment. Just for giggles, let us emphasize once more the need to compute 2~ ~! (mod N) without actually
computing 2V 1. Take, for instance, the 1024 bit RSA challenge number N = 135...563 from Example 80.
In Example 82, we did compute 2%V ~! (mod V), observed that it was #1 and concluded that N is not prime.
The number 2V ~ 1 itself has N — 1 ~ 210924 x5 103983 pinary digits. It is often quoted that the number of
particles in the visible universe is estimated to be between 10%° and 10199, Whatever these estimates are
worth, our number has WAY more digits (!) than that. Good luck writing it out! [Of course, the binary digits
are a single 1 followed by all zeros. However, we need to further compute with that!]
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Example 83. Fermat’s little theorem can be stated in the slightly stronger form:

nisaprime <= a""'=1 (modn) forallac{l,2,...,n—1}

Why? Fermat's little theorem covers the “—>" part. The <" part is a direct consequence of the fact that,
if n is composite with divisor d, then d"~!#1 (modn). (Why?!)

Review. In the second part, we used that the contrapositive of A=—> B is the logically equivalent statement
-B— —A.

| The Fermat primality test

Fermat primality test

Input: number n and parameter k indicating the number of tests to run
Output: “not prime” or “likely prime”
Algorithm:

Repeat k times:

Pick a random number a from {2,3,...,n — 2}.

If a® =11 (modn), then stop and output “not prime’.
Output “likely prime”.

If a®~1=1 (modn) although n is composite, then a is often called a Fermat liar.
On the other hand, if a” =% 1 (modn), then n is composite and a is called a Fermat witness.

Flaw. There exist certain composite numbers n (see Example 84) for which every a is a Fermat liar (or reveals
a factor of n). For this reason, the Fermat primality test should not be used as a general test for primality. That
being said, for very large random numbers, it is exceedingly unlikely to meet one of these troublesome numbers,
and so the Fermat test is indeed used for the purpose of randomly generating huge primes (for instance in
PGP). In fact, in that case, we can even always choose a =2 and k=1 with virtual certainty of not messing up.

Below, we will discuss an extension of the Fermat primality test which solve these issues (and is just mildly
slower).

Advanced comment. If n is composite but not an absolute pseudoprime (see Example 84), then at least half
of the values for a satisfy a” ~'#1 (modn) and so reveal that n is not a prime. This is more of a theoretical
result: for most large composite n, almost every a (not just half) will be a Fermat witness.

Example 84. Somewhat suprisingly, there exist composite numbers n with the following
disturbing property: every residue a is a Fermat liar or gcd(a,n) > 1.

This means that the Fermat primality test is unable to distinguish n from a prime, unless the randomly picked
number a happens to reveal a factor (namely, gcd(a,n)) of n (which is exceedingly unlikely for large numbers).

[Recall that, for large numbers, we do not know how to find factors even if that was our primary goal.]

Such numbers are called absolute pseudoprimes or Carmichael numbers.
The first few are 561, 1105, 1729, 2465, ... (it was only shown in 1994 that there are infinitely many of them).

These are very rare, however: there are 43 absolute pseudoprimes less than 10°. (Versus 78,498 primes.)
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