
Sketch of Lecture 11 Mon, 2/5/2018

Theorem 66. (Chinese Remainder Theorem) Let n1; n2; :::; nr be positive integers with
gcd(ni; nj)= 1 for i=/ j. Then the system of congruences

x� a1 (modn1); :::; x� an (modnr)

has a simultaneous solution, which is unique modulo n=n1���nr.

In other words. The Chinese remainder theorem provides a bijective (i.e., 1-1 and onto) correspondence
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For instance. Let's make the correspondence explicit for n=2, m=3:
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Example 67. Solve x� 1 (mod 4), x� 2 (mod 5), x� 3 (mod 7).
Solution. x� 1 � 5 � 7 � [(5 � 7)mod 4

¡1 ]

3

+2 � 4 � 7 � [(4 � 7)mod 5
¡1 ]

2

+3 � 4 � 5 � [(4 � 5)mod 7
¡1 ]

¡1

� 105+ 112¡ 60= 157�

17 (mod140):

Silicon slave labor. Once you are comfortable doing it by hand, you can easily let Sage do the work for you:

Sage] crt([1,2,3], [4,5,7])

17

Example 68. (extra)

(a) Solve x� 2 (mod 4), x� 3 (mod25).

(b) Solve x�¡1 (mod 4), x� 2 (mod 7), x� 0 (mod 9).

Solution. (�nal answer only)

(a) x� 78 (mod100)

(b) x� 135 (mod252)

Example 69.

(a) Let p> 3 be a prime. Show that x2� 9 (mod p) has exactly two solutions (i.e. �3).

(b) Let p; q > 3 be distinct primes. Show that x2 � 9 (mod pq) always has exactly four
solutions (�3 and two more solutions �a).

Solution.

(a) If x2 � 9 (mod p), then 0 � x2 ¡ 9 = (x ¡ 3)(x + 3) (mod p). Since p is a prime it follows that
x¡ 3� 0 (mod p) or x+3� 0 (mod p). That is, x��3 (mod p).

(b) By the CRT, we have x2 � 9 (mod pq) if and only if x2 � 9 (mod p) and x2 � 9 (mod q). Hence,
x��3 (mod p) and x��3 (mod q). These combine in four di�erent ways.
For instance, x� 3 (mod p) and x� 3 (mod q) combine to x� 3 (mod pq). However, x� 3 (mod p)
and x�¡3 (mod q) combine to something modulo pq which is di�erent from 3 or ¡3.

Why primes >3? Why did we exclude the primes 2 and 3 in this discussion?
Comment. There is nothing special about 9. The same is true for x2� a2 (mod pq) for any integer a.
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Example 70. Determine all solutions to x2� 9 (mod35).
Solution. By the CRT:

x2� 9 (mod35)
() x2� 9 (mod5) and x2� 9 (mod7)
() x��3 (mod5) and x��3 (mod7)

The two obvious solutions modulo 35 are �3. To get one of the two additional solutions, we solve x �
3 (mod5), x�¡3 (mod7). [Then the other additional solution is the negative of that.]

x� 3 � 7 � 7mod 5
¡1

3

¡ 3 � 5 � 5mod 7
¡1

3

� 63¡ 45� 18 (mod35)

Hence, the solutions are x��3 (mod35) and x��18 (mod35). [�18��17 (mod35)]

Silicon slave labor. Again, we can let Sage do the work for us:

Sage] solve_mod(x^2 == 9, 35)

[(17); (32); (3); (18)]

Review: quadratic residues

De�nition 71. An integer a is a quadratic residue modulo n if a�x2 (modn) for some x.

Example 72. List all quadratic residues modulo 11.
Solution. We compute all squares: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2� 5, (�5)2� 3. Hence,
the quadratic residues modulo 11 are 0; 1; 3; 4; 5; 9.
Important comment. Exactly half of the 10 nonzero residues are quadratic. Can you explain why?
[Hint. x2� y2 (mod p) () (x¡ y) (x+ y)� 0 (mod p) () x� y or x�¡y (mod p)]

Example 73. List all quadratic residues modulo 15.
Solution. We compute all squares modulo 15: 02=0, (�1)2=1, (�2)2=4, (�3)2=9, (�4)2�1, (�5)2�10,
(�6)2� 6, (�7)2� 4. Hence, the quadratic residues modulo 15 are 0; 1; 4; 6; 9; 10.
Important comment. Among the �(15)=8 invertible residues, the quadratic ones are 1;4 (exactly a quarter).
Note that 15 is of the form n= pq with p; q distinct primes. Example 75 explains why this always happens
for such n.

Example 74. Let m;n be coprime. Show that a is a quadratic residue modulo mn if and only
if a is a quadratic residue modulo both m and n.
Solution. a is a quadratic residue modulo mn

() a�x2 (modmn) (for some integer x)
() a�x2 (modm) and a�x2 (modn) (for some integer x)
() a is a quadratic residue modulo both m and n
It is obvious that �=)� holds in the �nal step. To see that �(=� also holds is a bit more tricky: if a �
x2 (modm) and a� y2 (modn), then we can �nd s; t such that x¡ y=sm+ tn (possible by Bezout because
m;n are coprime) or, equivalently, x¡ sm= y+ tn. Then, with X=x¡ sm, we have a�X2 (modm) and
a�X2 (modn).

Example 75. Show why, if n= pq with p; q distinct primes, exactly a quarter of all invertible
residues modulo n are quadratic.
Solution. As we saw in the previous example, a is a quadratic residue modulo n= pq if and only if a is a
quadratic residue both modulo p and modulo q. We have �(p)/2 invertible quadratic residues modulo p, and
�(q)/2 invertible quadratic residues modulo q. These combine to �(p)

2
� �(q)

2
=

�(n)

4
(invertible quadratic)

residues modulo n= pq.
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