
Sketch of Lecture 8 Mon, 1/29/2018

Review.

� A pseudorandom generator (PRG) takes a seed x0 and produces a stream PRG(x0)=
x1x2 x3 ::: of numbers, which should be close to random numbers.
For cryptographic purposes, these numbers should be indistinguishable from random numbers. Even
for somebody who knows everything about the PRG except the seed. (See Example 53.)

� Once we have a PRG, we can use it as a stream cipher: Using the key k, we encrypt
Ek(m)=m�PRG(k). [Here, the key stream PRG(k) is assumed to be in bits.]

As with the one-time pad, we must never reuse the same keystream!

� To reuse the key, we can use a nonce: Ek(m)=m�PRG((nonce; k)), where the seed
is produced by combining the nonce and k (for instance, just concatenating them).
The nonce is then passed (unencrypted) along with the message.
To never reuse the same keystream, we must never use the same nonce with the same key.

How to generate random numbers?

Natural randomness is surprisingly di�cult to harness.
You can for instance play around with a Geiger counter but our department is short on these and getting lots
of random numbers is again challenging.

Linear congruential generators

(linear congruential generator) Let a; b;m be chosen parameters.

From the seed x0, we produce the sequence xn+1� axn+ b (modm).

The choice of a; b;m is crucial for this to generate acceptable pseudorandom numbers.
For instance, glibc uses a= 1103515245, b= 12345, m=231. (This is one of two implementations.) In that
case, each xi is represented by precisely 31 bits. [Note that the choice of m makes this very fast.]
Linear congruential generators (LCG) are easy to predict and must not be used for cryptographic purposes.
More generally, all polynomial generators are cryptographically insecure. They are still used in practice,
because they are fast and easy to implement and have decent statistical properties. (For instance, your online
homework is generated using random numbers, and there is no need for crypto-level security there.)
Statistical trouble. Can you see why the sequences produced by the glibc LCG alternate between even and
odd numbers? (Similarly, other low bits are much less �random� than the higher bits.) Because of this defect,
some programs (and other implementations of rand() based on LCGs) throw away the low bits entirely.

Example 49. Generate values using the linear congruential generator xn+1�5xn+3 (mod8),
starting with the seed x0=6.
Solution. x1� 1, x2� 0, x3� 3, x4� 2, x5� 5, x6� 4, x7� 7, x8� 6. This is the value x0 again, so the
sequence will now repeat. Note that we went through all 8 residues before repeating. Period 8.
Note. Because 8=23 we can represent each xi using exactly 3 bits. Then x1;x2;x3; :::=1;0;3; ::: corresponds
to the bit stream (001 000 011 :::)2.

Example 50. (extra) Observe that the sequence produced by the linear congruential generator
xn+1� axn+ b (modm) must repeat, at the latest, after m terms. (Why?!)

Armin Straub
straub@southalabama.edu

15



One can give precise conditions on a; b;m to achieve a full period m. Namely, this happens if
and only if gcd(b;m)= 1 and a¡ 1 is divisible by all primes (as well as 4) dividing m.

(a) Generate values using a linear congruential generator xn+1�2xn+1 (mod10), starting with the seed
x0=5. When do they repeat? Is that consistent with the mentioned condition?

(b) What are possible values for a so that the LCG xn+1� axn+ 11 (mod100) has period 100?

(c) glibc uses a= 1103515245, b= 12345, m=231. After how many terms will the sequence repeat?

Solution.

(a) x1� 1, x2� 3, x3� 7, x4� 5. This is the value x0 again, so the sequence will repeat. Period 4.
[The period is less than 10. This is as predicted by the mentioned condition, because a ¡ 1 is not
divisible by 2 and 5.]

(b) We need that a¡ 1 is divisible by 4 and 5. Equivalently, a� 1 (mod20). Hence, possible values are
a=1;21; 41; 61; 81.

(c) Clearly, gcd(b;m)= 1. Also, a¡ 1 is divisible by 4 (and no primes other than 2 divide m). Hence, for
every seed, values repeat only after going through all 231 residues.

Example 51. Let's use the PRG xn+1 � 5xn + 3 (mod 8) as a stream cipher with the key
k=4=(100)2. The key is used as the seed x0 and the keystream is PRG(k)=x1x2 ::: (where
each xi is 3 bits). Encrypt the message m=(101 111 001)2.
Solution. We �rst use the PRG with seed x0 = k to produce the keystream PRG(k) = 7; 6; 1; ::: =
(111 110 001 :::)2.
We then encrypt and get c=Ek(m) =m�PRG(k)= (101 111 001)2� (111 110 001)2=(010 001 000)2.
Decryption. Observe that decryption works in the exact same way:
Dk(c)= c�PRG(k)= (010 001 000)2� (111 110 001)2=(101 111 001)2.
Note. The keystream continues as PRG(k)= 7; 6; 1; 0; 3; 2; 5; 4; ::: At this point it repeats itself because we
obtained the value 4, which was our seed. Since the state of this PRG only depends on the value of xn, and
there is 8 possible values for xn, the period 8 is the longest possible. The homework from last class gave
conditions on the PRG that guarantee that the period is as long as possible.

Example 52. Can you think of a way in which the numbers produced by a linear congruential
generator di�er from truly random ones?
Solution. An easy observation is the following: by construction, xn+1�axn+ b (modm), individual numbers
don't repeat unless a full period is reached and everything repeats. Truly random numbers do repeat every
now and then (however, if m is large, then this observation is not exactly practical).
Of course, knowing the parameters a; b; m, the numbers generated by the PRG are terribly predictable.
Knowing just one number, we can produce all the next ones (as well as the ones before). A PRG that is safe
for cryptographic purposes should not be predictable like that! (See next example.)

The next example illustrates the vulnerability of stream ciphers, based on predictable PRGs.
Recall that it is common to know or guess pieces of plaintexts; for instance every PDF begins with %PDF.

Example 53. Eve intercepts the ciphertext c = (111 111 111)2. It is known that a stream
cipher with PRG xn+1� 5xn+ 3 (mod 8) was used for encryption. Eve also knows that the
plaintext begins with m=(110 1:::)2. Help her crack the ciphertext!
Solution. Since c = m � PRG, we learn that the initial piece of the keystream is PRG = m � c =
(110 1:::)2� (111 1:::)2= (001 0:::)2. Since each xn is 3 bits, we conclude that x1=(001)2=1.
Because the PRG is predictable, we can now recreate the entire keystream! Using xn+1� 5xn+3 (mod8),
we �nd x2� 0, x3� 3, ::: In other words, PRG=1; 0; 3; :::= (001 000 011 :::)2.
Hence, Eve can decrypt the ciphertext and obtain m = c � PRG = (111 111 111)2 � (001 000 011)2 =
(110 111 100)2.

Armin Straub
straub@southalabama.edu

16


