
Sketch of Lecture 36 Wed, 4/19/2017

10 Application: digital signatures

Using a private key, known only to her, Alice can attach her digital signature s to any message
m. Anyone knowing her public key can then verify that it could only have been Alice, who
signed the message.

� Consequently, in contrast to usual signatures, digital signatures must depend on the message to be
signed so that they cannot be simply reproduced by an adversary.

� This should sound a lot like public-key cryptography!

Cryptographically speaking, a digitally signed message (m; s) from Alice to Bob achieves:

� integrity: the message has not been accidentally or intentionally modi�ed

� authenticity: Bob can be con�dent the message came from Alice
In fact, we gain even more: not only is Bob assured that the message is from Alice, but the evidence
can be veri�ed by anyone. We have �proof� that Alice signed the message. This is referred to as non-
repudiation. We refer to a technical not a legal term here: if you are curious about legal aspects of
digital signatures, see, e.g.:

https://security.stackexchange.com/questions/1786/how-to-achieve-non-repudiation/6108

For comparison, sending a message with its hash (m;H(m)) only achieves integrity.

Example 197. (authentication using digital signatures) Last time, we saw that using
human generated and memorized passwords is problematic even if done �right� (Example 193).
Among other things, digital signatures provide an alternative approach to authentication.
Authentication. If Alice wants to authenticate herself with a server, the server sends her a (random) message.
Using her private key, Alice signs this message and sends it back to the server. The server then veri�es her
(digital) signature using Alice's public key.
Obvious advantage. The server (like everyone else) doesn't know Alice's secret, so it cannot be stolen from
the server (of course, Alice still needs to protect her secret from it being stolen).

(RSA signatures) Let H be a collision-resistant hash function.

� Alice creates a public RSA key (N; e). Her (secret) private key is d.

� Her signature of m is s=H(m)d (modN).

� To verify the signed message (m; s), Bob checks that H(m)= se (modN ).

This is secure if RSA is secure against known plaintext attacks.

Example 198. We use the silly hash function H(x)=x (mod 10).
Alice's public RSA key is (N; e)= (33; 3), her private key is d=7.

(a) How does Alice sign the message m= 12345?

(b) How does Bob verify her message?

Armin Straub
straub@southalabama.edu

72



Solution.

(a) H(m) = 5. The signature therefore is s= 57 (mod33) (note how computing that signature requires
Alice's private key). Computing that, we �nd s= 14.

(b) Bob receives the signed message (m; s)= (12345; 14).
He computesH(m)=5 and then checks whether H(m)�s3 (mod33) (for which he only needs Alice's
public key). Indeed, 143� 5 (mod33), so the signature checked out.

Just to make sure. What's a collision of our hash function? Why is it totally not one-way?

Example 199. Why should Alice sign the hash H(m) and not the message m?
Solution. A practical reason is that signing H(m) is faster. If m is very large, the slowness of RSA might
even make the signing impractical.
There is another issue though. Namely, Eve can do the following no message attack: she starts with any
signature s, then computes m= se (modN). Everyone will then believe that (m; s) is a message signed by
Alice. This does not work if H is a one-way function: Eve now needs to �ndm such thatH(m)=se (modN),
but she fails to �nd such m if H is one-way.

Example 200. Is it enough if the hash for signing is one-way but not collision-resistant?
Solution. No, that is not enough. If there is a collision H(m) =H(m0), then Eve can ask Alice to sign m
to get (m; s) and later replace m with m0, because (m0; s) is another valid signed message.
Comment. This question is of considerable practical relevance, since hash functions like MD5 and SHA-1
have been shown to not be collision-resistant (but are still considered essentially preimage-resistant, that is,
one-way). In the case of MD5, this has been exploited in practice:
https://en.wikipedia.org/wiki/MD5#Collision_vulnerabilities

Example 201. (homework) Alice uses an RSA signature scheme and the (silly) hash function
H(x) = x1+ x2, where x1= x¡1 (mod 11) and x2= x¡1 (mod 7) [with 0¡1 interpreted as 0]
to produce the signed message (100; 13). Forge a second signed message.
Solution. Since we have no other information, in order to forge a signed message, we need to �nd another
message with the same hash value as m = 100. From our experience with the Chinese remainder theorem,
we realize that changing x by 7 �11 does not change H(x). Hence, a second signed message is (177; 13).

Comment. The hash H(m) for m= 100 is H(100)= (100¡1)mod 11+(100¡1)mod 7=1+4=5.

Similar to what we did with RSA signatures, one can use ElGamal as the basis for digital sig-
natures. A variation of that is the DSA (digital signature algorithm), another federal standard.
https://en.wikipedia.org/wiki/ElGamal_signature_scheme

https://en.wikipedia.org/wiki/Digital_Signature_Algorithm

Not surprisingly, the hashes mandated for DSA are from the SHA family.

11 Birthday paradox and birthday attacks

Example 202. (birthday paradox) Among n=35 people (our class size), how likely is it that
two have the same birthday?
Solution.

1¡
�
1¡ 1

365

��
1¡ 2

365

��
1¡ 3

365

�
���
�
1¡ 34

365

�
� 0.814

If the formula doesn't speak to you, see Section 8.4 in our book for more details or checkout:
https://en.wikipedia.org/wiki/Birthday_problem

Comment. For n= 50, we get a 97.0% chance. For n= 70, it is 99.9%.
Comment. In reality, birthdays are not distributed quite uniformly, which further increases these probabilities.

Armin Straub
straub@southalabama.edu

73


