Example 134. (**DES-X**) To increase the key size of DES, the following variation, known as DES-X, was proposed by Ron Rivest in 1984:

 $c = k_3 \oplus DES_{k_2}(m \oplus k_1)$

What is the key size of DES-X? What about the effective key size?

Solution. k_1 and k_3 must be 64 bit, while k_2 is 56 bits. That's a total key size of 184 bits for DES-X. However, just like for 3DES, the possibility of a meet-in-the-middle-attack reduces the effective key size to at most 184 - 64 = 120 bits.

Comment. This approach of xoring with a subkey before and after everything else is known as **key whitening**. This features in many modern ciphers, including AES.

Example 135. (bonus!) Using DES, are there blocks m, c such that $E_k(m) = c$ for more than one key k?

I don't know the answer and couldn't find it easily. Maybe you are more skilled?

To construct the finite field $GF(p^n)$ of p^n elements, we can do the following:

- Fix a polynomial m(x) of degree n, which cannot be factored modulo p.
- The elements of $GF(p^n)$ are polynomials modulo m(x) modulo p.

Irreducible mod p? A polynomial is irreducible modulo p if and only if it cannot be factored modulo p. For instance, the polynomial $x^2 + 2x + 1$ can always be factored as $(x + 1)^2$. For the polynomials $m(x) = x^2 + x + 1$ things are more interesting:

- $x^2 + x + 1$ cannot be factored over \mathbb{Q} because the roots $\frac{-1 \pm \sqrt{-3}}{2}$ are not rational.
- However, $x^2 + x + 1 \equiv (x+2)^2$ modulo 3, so it can be factored modulo 3.
- On the other hand, $x^2 + x + 1$ is irreducible modulo 2 (that is, it cannot be factored: the only linear factors are x and x + 1, but x^2 , x(x + 1) and $(x + 1)^2$ are all different from $x^2 + x + 1$ modulo 2).

Comment. Actually, all finite fields can be constructed in this fashion. Moreover, choosing different m(x) to construct $GF(p^n)$ does not matter: the resulting fields are always isomorphic (i.e. work in the same way, although the elements are represented differently). That justifies writing down $GF(p^n)$, since there is exactly one such field.

Example 136. AES is based on representing bytes as elements of the field $GF(2^8)$. It is constructed using the polynomial $x^8 + x^4 + x^3 + x + 1$ (which is indeed irreducible mod 2).

Example 137. As seen above, the polynomial $x^2 + x + 1$ is irreducible modulo 2, so we can use it to construct the finite field $GF(2^2)$ with 4 elements.

- (a) List all 4 elements, and make an addition table. Then realize that this is just xor.
- (b) Make a multiplication table.
- (c) What is the inverse of x + 1?

Solution.

(a) The four elements are 0, 1, x, x + 1. For instance, (x + 1) + x = 2x + 1 = 1 (in GF(2²), since we are working modulo 2). The full table is below.

Each of the four elements is of the form ax + b, which can be represented using the two bits ab (for instance, $(10)_2$ represents x and $(11)_2$ represents x + 1).

Then, addition of elements ax + b in $GF(2^2)$ works in the same way as xoring bits ab.

(b) For instance, $(x+1)^2 = x^2 + 2x + 1 \equiv x^2 + 1 \equiv x$.

The key to realize is that reducing modulo $x^2 + x + 1$ is the same as saying that $x^2 = -x - 1$, i.e. $x^2 = x + 1$ in $GF(2^2)$. That means all polynomials of degree 2 and higher can be reduced to polynomials of degree less than 2.

+	0	1	x	x+1	×	0	1	x	x+1
0	0	1	x	x+1	0	0	0	0	0
1	1	0	x+1	x	1	0	1	x	x+1
x	x	x+1	0	1	x	0	x	x+1	1
x+1	x+1	x	1	0	x+1	0	x+1	1	x

(c) We are looking for an element y such that y(x+1) = 1 in $GF(2^2)$. Looking at the table, we see that y = x has that property. Hence, $(x+1)^{-1} = x$ in $GF(2^2)$.

Example 138. (homework) The polynomial $x^3 + x + 1$ is irreducible modulo 2, so we can use it to construct the finite field $GF(2^3)$ with 8 elements.

- (a) List all 8 elements, and multiply all of them with x + 1.
- (b) What is the inverse of x + 1?

Solution.

(a) The elements are $0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1$.

[Note that $x^3 = -x - 1 = x + 1$ in GF(2³). That means all polynomials of degree 3 and higher can be reduced to polynomials of degree less than 3.]

When multiplying, we calculate, for instance: $(x + 1)x^2 = x^3 + x^2 = x^2 + x + 1$ Similarly: $(x + 1)(x^2 + 1) = (x + 1)x^2 + (x + 1) \equiv (x^2 + x + 1) + (x + 1) \equiv x^2$ Or: $(x + 1)(x^2 + x) = (x + 1)x^2 + (x + 1)x \equiv (x^2 + x + 1) + (x^2 + x) \equiv 1$

(x + 1)(x + x) - (x + 1)x + (x + 1)x = (x + x + 1) + (x + x) = 1

\times	0	1	x	x+1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
x+1	0	x+1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	x

(b) We are looking for an element y such that y(x+1) = 1 in $GF(2^3)$. Looking at the table, we see that $y = x^2 + x$ has that property. Hence, $(x+1)^{-1} = x^2 + x$ in $GF(2^3)$.

5.2 Basics of AES

The block cipher AES (short for **advanced encryption standard**) replaced DES. By now, it is the most important symmetric block cipher.

1997: NIST requests proposals for AES (receives 15 submissions)[very different from how DES was selected!]2000: Rijndael (by Joan Daemen and Vincent Rijmen) selected (from 5 finalists)

[AES-192/256 is first (and only) public cipher allowed by NSA for top secret information.]

- 128 bit block size (as per NIST request)
- key size 128/192/256 bit (10, 12, 14 rounds)