
Sketch of Lecture 19 Mon, 2/27/2017

Example 115. How can you check whether a huge randomly selected number N is prime?

Solution. Compute 2N¡1 (modN) using binary exponentiation. If this is�/1 (modN), thenN is not a prime.
Otherwise, N is a prime or 2 is a Fermat liar modulo N (but the latter is exceedingly unlikely for a huge
randomly selected number N ; the bonus challenge below indicates that this is almost as unlikely as randomly
running into a factor of N).
Comment. There is nothing special about 2 here (you could also choose 3 or any other residue).
Comment. Just for giggles, let us emphasize once more the need to compute 2N¡1 (modN) without actually
computing 2N¡1. Take, for instance, the 1024 bit RSA challenge number N = 135:::563 from Example 78.
In Example 109, we did compute 2N¡1 (mod N), observed that it was �/1 and concluded that N is not
prime. The number 2N¡1 itself has N ¡1� 21024�10308.3 binary digits. It is often quoted that the number
of particles in the visible universe is estimated to be between 1080 and 10100. Whatever these estimates are
worth, our number has WAY more digits (!) than that. Good luck writing it out!

The Fermat primality test picks a and checks whether an¡1� 1 (modn).

� If an¡1�/ 1 (modn), then we are done because n is de�nitely not a prime.

� If an¡1� 1 (modn), then either n is prime or a is a Fermat liar.
But instead of leaving o� here, we can dig a little deeper:

Note that a(n¡1)/2 satis�es x2� 1 (modn). If n is prime, then a(n¡1)/2��1 (modn).
[Recall that, if n is composite (and odd), then x2� 1 (modn) has additional solutions!]

� Hence, if a(n¡1)/2�/ �1 (modn), then we again know for sure that n is not a prime.
In fact, we can now factor n! See bonus challenge below.

� If a(n¡1)/2�1 (modn) and n¡ 1

2
is divisible by 2, we continue and look at a(n¡1)/4 (modn).

� If a(n¡1)/2�¡1 (modn), then n is a prime or a is a strong liar.

Write n¡ 1=2s �m with m odd. In conclusion, if n is a prime, then

am� 1 or, for some r=0; 1; :::; s¡ 1; a2
rm�¡1 (modn):

In other words, when computing am; a2m; :::; a2
sm, we must see the value ¡1 before the value 1 (unless am

is already 1).

Example 116. (bonus challenge) If an¡1� 1 (modn) but a(n¡1)/2�/ �1 (modn), then we
can factor n! How?!
Comment. However, note that this only happens if a is a Fermat liar modulo n, and these are typically very
rare. So, unfortunately, we have not discovered an e�cient factorization algorithm.
But we have run into an idea, which is used for some of the best known factorization algorithms. If time
permits, more on that later:::
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This gives rise to the following improved primality test:

Miller�Rabin primality test
Input: number n and parameter k indicating the number of tests to run
Output: �not prime� or �likely prime�
Algorithm:

Write n¡ 1=2s �m with m odd.
Repeat k times:

Pick a random number a from f2; 3; :::; n¡ 2g.
If am�/ 1 (modn) and a2

rm�/ ¡1 (modn) for all r=0; 1; :::; s¡ 1, then
stop and output �not prime�.

Output �likely prime�.

Comment. If n is composite, then less than a quarter of the values for a could possibly be strong liars. In other
words, for any composite number, the odds that the Miller�Rabin test returns �likely prime� are less than 4¡k.
Advanced comments. This is usually implemented as a probabilistic test. However, assuming GRH (the
generalized Riemann hypothesis), it becomes a deterministic algorithm if we check a= 2; 3; :::; b2(logn)2c.
This is mostly of interest for theoretical applications. For instance, this then becomes a polynomial time
algorithm for checking whether a number is prime.
More recently, in 2002, the AKS primality test was devised. This test is polynomial time (without relying on
outstanding conjectures like GRH).

Example 117. Suppose we want to determine whether n = 221 is a prime. Simulate the
Miller�Rabin primality test for the choices a= 24, a= 38 and a= 47.
Solution. n¡ 1= 4 � 55=2s �m with s=2 and m= 55.

� For a= 24, we compute am= 2455� 80�/ �1 (mod221). We continue with a2m� 802� 212�/ ¡1,
and conclude that n is not a prime.
Note. We do not actually need to compute an¡1= a4m, which features in the Fermat test.

� For a= 38, we compute am= 3855 � 64�/ �1 (mod221). We continue with a2m� 642� 118�/ ¡1
and conclude that n is not a prime.
Note. This case is somewhat di�erent from the previous in that 38 is a Fermat liar. Indeed, a4m�
1182� 1 (mod221). This means that we have found a nontrivial sqareroot of 1.

� For a= 47, we compute am= 4755� 174�/ �1 (mod221). We continue with a2m� 1742�¡1. We
conclude that n is a prime or a is a strong liar. In other words, we are not sure but are (incorrectly)
leaning towards thinking that 221 was a prime.

Comment. In this example, only 4 of the 218 residues 2; 3; :::; 219 are liars (namely 21; 47; 174; 200).
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