
Sketch of Lecture 7 Wed, 1/25/2017

Any serious cryptography involves computations that need to be done by a machine. Let us
see how to use the open-source computer algebra system Sage to do basic computations for us.

Sage is freely available at sagemath.org. Instead of installing it locally (it's huge!) we can conveniently use
it in the cloud at cloud.sagemath.com from any browser.
Sage is built as a Python library, so any Python code is valid. For starters, we will use it as a fancy calculator.

Example 50. Let's start with some basics.

Sage] 17 % 12

5

Sage] (1 + 5) % 2 # don't forget the brackets

0

Sage] inverse_mod(17, 23)

19

Sage] xgcd(17, 23)

(1;¡4; 3)

Sage] -4*17 + 3*23

1

Sage] euler_phi(84)

24

Example 51. Why is the following bad?

Sage] 3^1003 % 101

27

The reason is that this computes 31003 �rst, and then reduces that huge number modulo 101:

Sage] 3^1003

35695912125981779196042292013307897881066394884308000526952849942124372128361032287601\
01447396641767302556399781555972361067577371671671062036425358196474919874574608035466\
17047063989041820507144085408031748926871104815910218235498276622866724603402112436668\
09387969298949770468720050187071564942882735677962417251222021721836167242754312973216\
80102291029227131545307753863985171834477895265551139587894463150442112884933077598746\
0412516173477464286587885568673774760377090940027

We know how to avoid computing huge intermediate numbers. Sage does the same if we instead
use something like:

Sage] power_mod(3, 1003, 101)

27

Armin Straub
straub@southalabama.edu

13



Example 52. By the way, Sage is easy to use for plotting, too.
Sage] plot(sin(2*x), (0,10))

2 4 6 8 10

-1

-0.5

0.5

1

Example 53. We can solve equations modulo n. For instance:
Sage] solve_mod(x^2 == 1, 17)

[(1); (16)]

Sage]

Explain why the following has four solutions. [Hint: Chinese Remainder Theorem]

Sage] solve_mod(x^2 == 1, 21)

[(1); (13); (8); (20)]

Sage]

This even works with several variables (and is the reason why the solutions above are tuples):

Sage] y = var('y')

Sage] solve_mod(x^2 + y^2 == 1, 3)

[(0; 1); (0; 2); (1; 0); (2; 0)]

Example 54. (bonus challenge!) We can de�ne our own functions. Here is a recursive
implementation of Fibonacci numbers:
Sage] def fibo(n):

if n==0: return 0
if n==1: return 1
return fibo(n-1)+fibo(n-2)

Sage] fibo(4)

3

Sage] [fibo(n) for n in [0..10]]

[0; 1; 1; 2; 3; 5; 8; 13; 21;34; 55]

Sage] fibo(34)

5702887

The last comment takes quite a while (and fibo(40) will take ages). Can you explain why?
Even better, propose a solution to our issue.

Example 55. (homework) Check the solutions to today's quiz using Sage.

Armin Straub
straub@southalabama.edu

14


