
1 Optimization

Example 1. Find positive values of x and y that minimize S= x+ y if xy= 16.

Solution.
S=x+ y (objective equation)

xy= 16 (constraint equation)

To minimize S, we express S as a function of one variable, say, x:

Since y= 16
x
, we get S(x)=x+

16
x
.

(�nd min of S(x)) S 0(x)= 1¡ 16
x2

Solving S 0(x)= 0, we �nd: 1¡ 16x¡2 = 0

x2 = 16
x = �4

Hence, x=4 (see details for next problem).

Correspondingly, y= 16
x
=4.

In conclusion, if x=4 and y=4, then S is minimized and equal to 8.

Example 2. A small rectangular garden of area 80 square meters is to be surrounded on
three sides by a brick wall costing 5 dollars per meter and on one side by a fence costing 3
dollars per meter. Find the dimensions of the garden such that the overall cost is minimized.

Solution.

(setup) Let a be the length (in m) of the side with a fence,
and b the length of the other side.

Overall cost: C=(5+3)a+(5+5)b=8a+ 10b. (objective equation)

On the other hand, ab= 80. (constraint equation)
To minimize the cost C, we express C as a function of a:

Since b= 80
a
, we get C(a)= 8a+ 10 � 80

a
=8a+ 800a¡1.

(�nd min of C(a)) C 0(a)= 8+ 800 � (¡a¡2)= 8¡ 800a¡2

Solving C 0(a)= 0, we �nd: 8¡ 800a¡2 = 0

a2 = 100
a = �10

Hence, a= 10 (see details below).

Correspondingly, b= 80
a
=8.

We conclude that, to minimize costs, the length of the side with a fence should be a= 10 meters and
the length of the other side should be b= 80

a
=8 meters.
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Details. Our task was to �nd the absolute minimum of C(a) for a in (0;1).

We found that a = 10 was the only critical point in (0;1) and hence the only candidate for a local
min. To determine that there is indeed a local min at a= 10, we have several options:

(a) Observe that for small a (close to 0) and large a, the cost is de�nitely not optimal (actually the cost
becomes arbitrarily large); hence, the absolute minimum must be somewhere in between, and the
only candidate is a= 10.

(b) Apply the second-derivative test: C 00(a) = 1600a¡3, so that C 00(10) = 8

5
> 0, which shows that

there is a local min at a= 10.
(c) Apply the �rst-derivative test: since, say, C 00(1)=¡792< 0 and C 00(20)=6>0, we conclude that

C 0 changes from ¡ to + at a= 10, which again shows that there is a local min at a= 10.
Comment. We could also have expressed the cost as a function of b. Then C(b) = 8 � 80

b
+ 10b =

640b¡1+10b and C 0(b)=¡640b¡2+10, so that C 0(b)=0 simpli�es to b2=64. We would conclude
that b=8 and then determine a= 80

b
=10, ending up (of course!) with the same dimensions as before.
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2 Optimization, business-style

Recall.

� Pro�t is revenue minus cost: P =R¡C
Here, x (in units) is a production level.

� If cost is C(x) then marginal cost is C 0(x).

� R= p �x where p is price per unit.

However, note that p will depend on x:

p= f(x) is called the demand equation.

Example 3. Given the cost function C(x) = x3 ¡ 12x2 + 60x + 20, �nd the minimal
marginal cost.

Solution.

The marginal cost function is M(x)=C 0(x)= 3x2¡ 24x+ 60:
We need to �nd the minimum of M(x).

M 0(x)= 6x¡ 24

Solving M 0(x)= 0, we �nd x=4:

Let us check that this is a minimum:

[You could skip this step by arguing that x=4 must be the minimum because it is the only candidate.]

� (second derivative test) M 00(x)= 6

Since M 00(4)= 6> 0, this is a local minimum.

� Because there is no other critical points, this must be the absolute minimum.

The minimal marginal cost is M(4)= 12.
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Example 4. The demand equation for a certain commodity is

p=x2¡ 4x+4; 06x6 2

Find the production level x and the corresponding price p that maximizes revenue.

Solution. Revenue is R= p �x=(x2¡ 4x+4) �x=x3¡ 4x2+4x.

We need to �nd the maximum of that R(x).

R0(x)= 3x2¡ 8x+4

Solving R0(x)= 0, we �nd x= 8� 64¡ 48
p

6
=
8� 4
6

=
2

3
; 2.

Note that x = 2 is on the boundary of permitted values: indeed, for x= 2, the price is p = 0 (which
clearly doesn't maximize revenue).

Hence, revenue is maximized for production level x= 2

3
and price p=x2¡ 4x+4=

16
9
.

Note. If you didn't see that x=2 was not a candidate, you can always perform one of the derivative
tests to determine that there is a maximum at 2

3
and a minimum at x=2.

Example 5. At a price of 6 dollars, 50 beers were sold per night at a local cinema. When
the price was raised to 7 dollars, sales dropped to 40 beers.

(a) Assuming a linear demand curve, which price maximizes revenue?

Solution. p prize per beer, x number of beer sold

Revenue is R(x)= p �x. (objective equation)

Linear demand means that p= ax+ b (a line!) for some a; b.

We know that (x1; p1) = (50; 6) and (x2; p2)= (40; 7).

Hence, p¡ 6= slope
p2¡p1
x2¡x1

=
1

¡10

(x¡ 50). This simpli�es to p= 11¡ 1

10
x. (constraint equation)

Revenue is R(x)= p �x=
�
11¡ 1

10x
�
�x= 11x¡ 1

10x
2:

(�nd max of R(x)) R0(x)= 11¡ 2

10
x

Solving R0(x)= 11¡ 1

5
x=0, we �nd x= 55:

The corresponding price is p= 11¡ 1

10
� 55= 5.5 dollars.

(Then the revenue is R(55) = 5.5 �55= 302.5 dollars.)

(b) Suppose the cinema has �xed costs of 100 dollars per night for selling beer, and variable
costs of 2 dollars per beer. Find the price that maximizes pro�t.

Solution. p prize per beer, x number of beer sold

Cost is C(x)= 100+2x:

As before, revenue is R(x)= 11x¡ 1

10
x2.

Pro�t is P (x)=R(x)¡C(x)= 9x¡ 1

10x
2¡ 100:

(�nd max of P (x)) P 0(x)= 9¡ 2

10
x

Solving P 0(x)= 9¡ 1

5
x=0, we �nd x=45.

The corresponding price is p= 11¡ 1

10
� 45= 6.5 dollars.

(Then the pro�t is P (45)= 102.5 dollars.)
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