1 Optimization

Example 1. Find positive values of x and y that minimize S = x + y if xy = 16.

Solution.

$$S = x + y$$
 (objective equation) $xy = 16$ (constraint equation)

To minimize S, we express S as a function of one variable, say, x:

Since
$$y = \frac{16}{x}$$
, we get $S(x) = x + \frac{16}{x}$.

(find min of
$$S(x)$$
) $S'(x) = 1 - \frac{16}{x^2}$

Solving
$$S'(x)=0$$
 , we find: $1-16x^{-2}=0$
$$x^2=16 \\ x=\pm 4$$

Hence, x = 4 (see details for next problem).

Correspondingly, $y = \frac{16}{x} = 4$.

In conclusion, if x = 4 and y = 4, then S is minimized and equal to 8.

Example 2. A small rectangular garden of area 80 square meters is to be surrounded on three sides by a brick wall costing 5 dollars per meter and on one side by a fence costing 3 dollars per meter. Find the dimensions of the garden such that the overall cost is minimized.

Solution.

(setup) Let a be the length (in m) of the side with a fence, and b the length of the other side.

Overall cost:
$$C = (5+3)a + (5+5)b = 8a + 10b$$
.

(objective equation)

On the other hand, ab = 80.

(constraint equation)

To minimize the cost C, we express C as a function of a:

Since
$$b = \frac{80}{a}$$
, we get $C(a) = 8a + 10 \cdot \frac{80}{a} = 8a + 800a^{-1}$.

(find min of
$$C(a)$$
) $C'(a) = 8 + 800 \cdot (-a^{-2}) = 8 - 800a^{-2}$

Solving
$$C'(a) = 0$$
, we find: $8 - 800a^{-2} = 0$

$$a^2 = 100$$

$$a = \pm 10$$

Hence, a = 10 (see details below).

Correspondingly,
$$b = \frac{80}{a} = 8$$
.

We conclude that, to minimize costs, the length of the side with a fence should be a=10 meters and the length of the other side should be $b=\frac{80}{a}=8$ meters.

Details. Our task was to find the absolute minimum of C(a) for a in $(0, \infty)$.

We found that a=10 was the only critical point in $(0,\infty)$ and hence the only candidate for a local min. To determine that there is indeed a local min at a=10, we have several options:

- (a) Observe that for small a (close to 0) and large a, the cost is definitely not optimal (actually the cost becomes arbitrarily large); hence, the absolute minimum must be somewhere in between, and the only candidate is a=10.
- (b) Apply the second-derivative test: $C''(a)=1600a^{-3}$, so that $C''(10)=\frac{8}{5}>0$, which shows that there is a local min at a=10.
- (c) Apply the first-derivative test: since, say, C''(1) = -792 < 0 and C''(20) = 6 > 0, we conclude that C' changes from to + at a = 10, which again shows that there is a local min at a = 10.

Comment. We could also have expressed the cost as a function of b. Then $C(b)=8\cdot\frac{80}{b}+10b=640b^{-1}+10b$ and $C'(b)=-640b^{-2}+10$, so that C'(b)=0 simplifies to $b^2=64$. We would conclude that b=8 and then determine $a=\frac{80}{b}=10$, ending up (of course!) with the same dimensions as before.

2 Optimization, business-style

Recall.

- Profit is revenue minus cost: P = R CHere, x (in units) is a production level.
- If cost is C(x) then marginal cost is C'(x).
- $R = p \cdot x$ where p is price per unit.

However, note that p will depend on x: $p = f(x) \text{ is called the } \frac{demand }{demand } \frac{demand }{de$

Example 3. Given the cost function $C(x) = x^3 - 12x^2 + 60x + 20$, find the minimal marginal cost.

Solution.

The marginal cost function is $M(x) = C'(x) = 3x^2 - 24x + 60$.

We need to find the minimum of ${\cal M}(x).$

$$M'(x) = 6x - 24$$

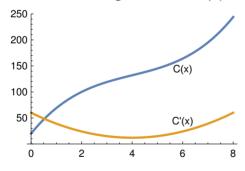
Solving M'(x) = 0, we find x = 4.

Let us check that this is a minimum:

[You could skip this step by arguing that x=4 must be the minimum because it is the only candidate.]

- (second derivative test) M''(x) = 6Since M''(4) = 6 > 0, this is a local minimum.
- Because there is no other critical points, this must be the absolute minimum.

The minimal marginal cost is M(4) = 12.



Example 4. The demand equation for a certain commodity is

$$p = x^2 - 4x + 4, \quad 0 \le x \le 2$$

Find the production level x and the corresponding price p that maximizes revenue.

Solution. Revenue is $R = p \cdot x = (x^2 - 4x + 4) \cdot x = x^3 - 4x^2 + 4x$.

We need to find the maximum of that R(x).

$$R'(x) = 3x^2 - 8x + 4$$

Solving
$$R'(x) = 0$$
, we find $x = \frac{8 \pm \sqrt{64 - 48}}{6} = \frac{8 \pm 4}{6} = \frac{2}{3}, 2$.

Note that x=2 is on the boundary of permitted values: indeed, for x=2, the price is p=0 (which clearly doesn't maximize revenue).

Hence, revenue is maximized for production level $x=\frac{2}{3}$ and price $p=x^2-4x+4=\frac{16}{9}$.

Note. If you didn't see that x=2 was not a candidate, you can always perform one of the derivative tests to determine that there is a maximum at $\frac{2}{3}$ and a minimum at x=2.

Example 5. At a price of 6 dollars, 50 beers were sold per night at a local cinema. When the price was raised to 7 dollars, sales dropped to 40 beers.

(a) Assuming a linear demand curve, which price maximizes revenue?

Solution. p prize per beer, x number of beer sold

Revenue is
$$R(x) = p \cdot x$$
.

(objective equation)

Linear demand means that p = ax + b (a line!) for some a, b.

We know that
$$(x_1, p_1) = (50, 6)$$
 and $(x_2, p_2) = (40, 7)$.

Hence,
$$p-6=\underbrace{\sup_{\frac{p_2-p_1}{x_2-x_1}=\frac{1}{-10}}}(x-50)$$
. This simplifies to $p=11-\frac{1}{10}x$. (constraint equation)

Revenue is
$$R(x) = p \cdot x = \left(11 - \frac{1}{10}x\right) \cdot x = 11x - \frac{1}{10}x^2$$
.

(find max of
$$R(x)$$
) $R'(x) = 11 - \frac{2}{10}x$

Solving
$$R'(x) = 11 - \frac{1}{5}x = 0$$
, we find $x = 55$.

The corresponding price is
$$p=11-\frac{1}{10}\cdot 55=5.5$$
 dollars.

(Then the revenue is
$$R(55) = 5.5 \cdot 55 = 302.5$$
 dollars.)

(b) Suppose the cinema has fixed costs of 100 dollars per night for selling beer, and variable costs of 2 dollars per beer. Find the price that maximizes profit.

Solution. p prize per beer, x number of beer sold

Cost is
$$C(x) = 100 + 2x$$
.

As before, revenue is
$$R(x) = 11x - \frac{1}{10}x^2$$
.

Profit is
$$P(x) = R(x) - C(x) = 9x - \frac{1}{10}x^2 - 100$$
.

(find max of
$$P(x)$$
) $P'(x) = 9 - \frac{2}{10}x$

Solving
$$P'(x) = 9 - \frac{1}{5}x = 0$$
, we find $x = 45$.

The corresponding price is
$$p = 11 - \frac{1}{10} \cdot 45 = 6.5$$
 dollars.

(Then the profit is
$$P(45) = 102.5$$
 dollars.)