f'(a) is the

- slope of the tangent line approximating f(x) at x = a
- rate of change of f(x) at x = a

We can estimate function values by using the tangent line as an approximation:

### **Example 1.** Suppose f(2) = 1 and f'(2) = 3.

(a) Estimate f(2.5).

The tangent line at x = 2 is y - 1 = 3(x - 2) or y = 1 + 3(x - 2).  $f(2.5) \approx 1 + 3(2.5 - 2) = 2.5$ 

(b) Estimate f(2.1).

 $f(2.1)\approx 1+3(2.1-2)=1.3$ 

(c) Which of the estimates do we expect to be more accurate?

The estimate for f(2.1).

The tangent line at x = 2 is a good approximation for values of x close to 2.

### 1 Slopes = rates of change

slope = 
$$\frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x}$$
 (i.e.  $\frac{\text{change in } y}{\text{change in } x}$ )

Recall that we write  $\frac{\mathrm{d}y}{\mathrm{d}x} = f'(x)$  if y = f(x).

f'(a) is the rate of change of f(x) at x = a.
f(b) - f(a)/b - a is the average rate of change of f(x) over the interval a ≤ x ≤ b.

Important. If b is close to a, then  $\frac{f(b) - f(a)}{b - a} \approx f'(a)$ .

# **Example 2.** Let $f(x) = x^2$ .

(a) What is the average rate of change over  $2 \leq x \leq 5$ ?

$$\frac{f(5) - f(2)}{5 - 2} \!=\! \frac{25 - 4}{5 - 2} \!=\! \frac{21}{3} \!=\! 7$$

Meaning that, on average, f(x) changes by 7 units per change of x by 1 unit.

(b) What is the rate of change at x = 2?

f'(x) = 2x so that f'(2) = 4

(c) What is the rate of change at x = 5?

f'(x) = 2x so that f'(5) = 10Make a sketch! [i.e. between x = a and x = b]

## 2 Higher derivatives

The derivative of the derivative is the second derivative.

It is denoted f''(x) or  $\frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x)$ . Or,  $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$ .

Similarly, but less important, there is a third derivative and so on...

**Example 3.** Let  $y = -2x^4 + 3x$ . Find the first and second derivatives.

(a)  $\frac{dy}{dx} = -8x^3 + 3$ (b)  $\frac{d^2y}{dx^2} = -24x^2$ 

Example 4. Determine:  $\frac{d^2}{dx^2}(2x^3 - x + 1)\Big|_{x=5}$ 

This is the same as setting  $f(x) = 2x^3 - x + 1$  and asking for f''(5).

#### Solution.

$$\frac{\mathrm{d}}{\mathrm{d}x}(2x^3 - x + 1) = 6x^2 - 1$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(2x^3 - x + 1) = 12x$$

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}(2x^3 - x + 1)\Big|_{x=5} = 12 \cdot 5 = 60$$

#### 3 Back to rates of change

f'(a) is the rate of change of f(x) at x = a

I like to think my coffee

**Example 5.** Suppose your fresh cup of coffee is f(t) degrees (Fahrenheit) warm after t minutes.

(a) What is the meaning of f(5) = 175?

First off, the units for f(5) are degrees.

Meaning: After 5 minutes, your coffee is 175 degrees warm.

(b) What is the meaning of f'(5) = -2?

First off, the units for f'(5) are degrees/min.

**Meaning:** after 5 minutes (at that moment of time), the coffee is cooling down 2 degrees/minute. [This is the rate at which the temperature changes.]

- (c) Estimate the temperature after 6 minutes.
  - In other words, estimate f(6).

At t = 5, the temperature is f(5) = 175 degrees, and

it changes at a rate of f'(5) = -2 degrees/minute.

Hence, we estimate  $f(6) \approx 175 - 2 = 173$  degrees.

Note. Mathematically, we have approximated f(t) with the tangent line at t = 5 (which has equation f(5) + f'(5)(t-5)).

(d) Estimate the temperature after 8 minutes.

As before, we now estimate  $f(8) \approx 175 - 2 \cdot 3 = 169$ .

This estimate is more risky since 8 is further away from 5.

Fancy thoughts. Should we expect f(8) < 169 or f(8) > 169?

The rate of change should decrease as the coffee approaches room temperature. Hence, we expect that f(8) > 169 and that f'(8) > -2.

Comment. We might discuss Newton's law of cooling when talking about exponential models.

(e) Given f(5) = 175 and f(8) = 170, what is the average rate of change between minute 5 and minute 8?

$$\frac{f(8) - f(5)}{8 - 5} \!=\! \frac{170 - 175}{8 - 5} \!=\! -\frac{5}{3}$$

Between minute 5 and minute 8, the temperature decreases on average by  $\frac{5}{3}$  degrees/min.

Note. This is an average rate of change!

 $f'(5) = -2 < -\frac{5}{3}$  and we expect that f'(8) is in  $\left(-\frac{5}{3}, 0\right)$ .

#### 4 Marginal cost/revenue/profit

- If C(x) is the cost to produce x units, then
- C'(x) is the marginal cost (at production level x).

Marginal cost is measured in cost/unit.

It is the cost per (additional) unit at production level x.

Note that  $C'(x) \approx \frac{C(x+1) - C(x)}{1}$ 

The right-hand side is literally the cost to produce one more item. However, it is beneficial to also allow fractional units, in which case C'(x) is more appropriate.

**Example 6.** Suppose the cost (in dollars) of producing x units of a product is given by  $C(x) = \operatorname{secret}(x)$  dollars.

(a) What is the cost of producing 50 units?

C(50) dollars

(b) What is the marginal cost when the production level is 50 units?

C'(50) dollars/unit

(c) At what level of production is the marginal cost 100 dollars/unit?

Need to solve C'(x) = 100.

Each such x is a level of production when the marginal cost is 100 dollars/unit. (There could be several such levels x of production.)

(d) How many units can we produce with 1000 dollars?

Need to solve C(x) = 1000.

Then x is the number of units can we produce with 1000 dollars.

**Profit** is revenue minus cost: P(x) = R(x) - C(x).

As before, x is the production level.

Marginal revenue and marginal profit are likewise defined:

• Marginal revenue is R'(x).

This is the (extra) revenue for an additional unit (at production level x).

• Marginal profit is P'(x).

This is the (extra) profit for an additional unit (at production level x).

**Example 7.** Suppose s(t) is the height in miles after  $t^{2500}$  minutes of a rocket that is shot up vertically.

(a) What is the meaning of s(5) = 1375?

First off, units: s(5) is miles.

After 5 minutes, the rocket is 1375 miles high.

(b) What is the meaning of s'(5) = 220?

First off, units: s'(5) is miles/min.



After 5 minutes, the rocket has a speed of 220 miles/min (13200 miles/h).

(c) What is the meaning of s''(5) = -22?

First off, units: s''(5) is (miles/min)/min, or miles/min<sup>2</sup>.

After 5 minutes, the rocket has an acceleration of -22 miles/min<sup>2</sup>.

**Physics comment.** Earth's gravitation is about 22 miles/min<sup>2</sup> (or  $32.2 \text{ ft/sec}^2$ ). In other words, our rocket is ballistic (only initially powered, then in free fall).

(d) When is the altitude of the rocket 2000 miles?

To find such a time t, we need to solve s(t) = 2000.

[The picture suggests  $t \approx 8.5$  and  $t \approx 21.5$ .]

(e) When does the rocket land again?

To find that time, we need to solve s(t) = 0.

One solution is t = 0 but we are looking for the other one.

[The picture suggests t = 30.]

(f) What is the maximal height the rocket reaches?

To find the time t of maximal height, we need to solve s'(t) = 0.

[The picture suggests t = 15 and a maximal height of  $s(15) \approx 2500$  miles.]

Just for fun. These numbers are all made up. However, they are (in some aspects) not too far off from the 2017/7/28 launch of a North Korea missile. That missile reached a height of about 2315 miles and landed after 47 minutes.

https://en.wikipedia.org/wiki/Hwasong-14

For comparison, the ISS is  $205\mathchar`-270$  miles above earth, the moon 238,900 miles.

**Example 8.** Solve the last three parts of the previous problem if  $s(t) = 330t - 11t^2$ .

(a) When is the altitude of the rocket 2000 miles?

To find such a time t, we need to solve s(t) = 2000.

 $330t - 11t^2 = 2000$ , that is,  $-11t^2 + 330t - 2000 = 0$ has the two solutions  $t = \frac{-330 \pm \sqrt{330^2 - 4(-11)(-2000)}}{-22} = 8.429, 21.571.$ 

(b) When does the rocket land again?

To find that time, we need to solve s(t) = 0.

 $\underbrace{330t-11t^2}_{=t(330-11t)}=0 \text{ has the solutions } t=0 \text{ and } t=\frac{330}{11}=30.$ 

As suggested by the graph, the rocket lands at t = 30.

(c) What is the maximal height the rocket reaches?

To find the time t of maximal height, we need to solve s'(t) = 0.

s'(t) = 330 - 22t = 0 has the solution  $t = \frac{330}{22} = 15$ .

Thus, the maximal height is s(15) = 2475 miles.