The second-derivative test

```
f is concave up on an open interval I.
\iff f' is increasing on I.
```

Graphically. This means that the graph of f lies above the tangent lines.

Being **concave down** is defined analogously.

An **inflection point** is a point where concavity is changing. [From concave up to down, or the other way around.] Equivalently, an inflection point is a local extremum of the derivative.

Intuitively. Here is a visual way to think of concavity and inflection points: Imagine yourself riding a bike along the graph of f(x). If the graph is a straight line, then you are steering neither left nor right. Usually, however, the graph is curved and you will have to steer either a little left or a little right.

Steering left means the graph is concave up, steering right means the graph is concave down. An inflection point is a point where you are transitioning from steering one direction to the other.

(second-derivative rule)

- If f'' > 0 on I, then f is concave up on I.
- If f'' < 0 on I, then f is concave down on I.
- If f''(a) = 0, then f might have an inflection point at x = a.

Why? Recall that, if g' > 0 on I, then g is increasing on I. Apply that with g = f'.

Example 92. Let f(x) be as sketched.

- (a) On which intervals is f(x) increasing/decreasing?
- (b) Describe the slopes between x = 1 and x = 3.
- (c) Sketch f'(x).
- (d) Approximately, where is f(x) concave up/down?
- (e) Approximately, what are the inflection points?

Solution.

- (a) f(x) is increasing on the open intervals (1,3) and $(4,\infty)$. f(x) is decreasing on $(-\infty,1)$ and (3,4).
- (b) For 1 < x < 3, the slopes are positive (i.e. f(x) is increasing).
 - But we can say more:

The slopes are increasing from x = 1 until $x \approx 1.8$ (the maximal slope is about 2.1), then the slopes are descreasing from $x \approx 1.8$ to x = 3.

The point $x \approx 1.8$ is special. It is an inflection point.

(c) A sketch of f'(x):

- (d) f(x) is concave up for: x < 1.8 and x > 3.5f(x) is concave down for: 1.8 < x < 3.5
- (e) f(x) has inflection points at: $x \approx 1.8$ and $x \approx 3.5$

(second-derivative test) Suppose f'(a) = 0 and that f''(a) exists.

- If f''(a) < 0, then f(x) has a local maximum at x = a.
- If f''(a) > 0, then f(x) has a local minimum at x = a.
- If f''(a) = 0, then we don't know whether or not there is a local extremum at x = a.

Example 93. Find the local extrema of $f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$.

Solution. (using second-derivative test)

We have $f'(x) = x^2 - 4x + 3$. Solving f'(x) = 0 we find that the critical points are x = 1 and x = 3. Next, we compute the second derivative: f''(x) = 2x - 4

- f''(1) = -2 < 0 implies that f is concave down at x = 1. That means f lies below the horizontal tangent line. We therefore must have a local maximum at x = 1.
- f''(3) = 2 > 0 implies that f is concave up at x = 3. That means f lies above the horizontal tangent line. We therefore must have a local minimum at x = 3.

Solution. (using first-derivative test, as in previous examples)

Again, we start with $f'(x) = x^2 - 4x + 3$. Solving f'(x) = 0 we find that the critical points are x = 1 and x = 3.

intervals	x < 1	x = 1	1 < x < 3	x = 3	x > 3	
f'(x)	+	0		0	+	we can determine the sign by computing $f'(x)$ for some x in the interval
f(x)	X				$\overline{}$	

Hence, f(x) has a local maximum at x = 1 and a local minimum at x = 3.

Example 94. (cont'd) Find the inflection points of $f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$.

Solution. An inflection point is a local extremum of $f'(x) = x^2 - 4x + 3$. Since f''(x) = 2x - 4, solving f''(x) = 0, we find that there might be an inflection point at x = 2. It is indeed an inflection point because f'' is changing from < 0 (f being concave down) to > 0 (f being concave up) at x = 2.

When to use which test?

Rule of thumb: If f''(a) is easy to compute, use the second-derivative test.

Otherwise, or if f''(a) = 0, use the first-derivative test.

[If we have computed all a such that f'(x) = 0, then the first-derivative test is easy to apply because we can quickly determine the sign of f'(x) for any x.]

Example 95. (again, with focus on f'') Consider $f(x) = \frac{x+1}{x^2+x+4}$.

- (a) Find all critical points of f. For each critical point, use f'' to determine whether it is a local minimum or maximum.
- (b) Sketch the function and indicate the inflection points. How would we compute those?

Solution.

- (a) As last time, $f'(x) = \frac{-(x-1)(x+3)}{(x^2+x+4)^2}$. Solving f'(x) = 0, we find that the critical points are 1 and -3. We further compute $f''(x) = \frac{2(x^3+3x^2-9x-7)}{(x^2+x+4)^3}$ and evaluate to find $f''(-3) = \frac{1}{25}$ and $f''(1) = -\frac{1}{9}$.
 - f''(-3) > 0 implies that f is concave up at x = -3. That means f lies above the horizontal tangent line. We therefore must have a local minimum at x = -3.
 - f''(1) < 0 implies that f is concave down at x = 1. That means f lies below the horizontal tangent line. We therefore must have a local maximum at x = 1.

Comment. Combined with the fact that y=0 is a horizontal asymptote of f(x), both as $x \to \infty$ and $x \to -\infty$, we can conclude that both of these extrema have to be absolute extrema.

Comment. Here, computing f'' is actually a bit of work. If we had a choice, we would probably prefer to use the first-derivative test as we did earlier.

(b) The inflection points are indicated on the following sketch:

To compute these, we would solve f''(x) = 0, which is equivalent to the equation $x^3 + 3x^2 - 9x - 7 = 0$, which has three solutions: $x \approx -4.62$, $x \approx -0.663$, $x \approx 2.28$ (but there is no particularly simple formula for these values). These are the *x*-coordinates of the inflection points indicated on the plot.