Sketch of Lecture 22

Example 89. Find the extreme values of $f(x) = x^2 + 3x + 5$.

Solution. We know that this is a parabola (opening upwards) so that there is an absolute minimum and no further extrema. Since f'(x) = 2x + 3, solving f'(x) = 0, we find that the only critical point is at $x = -\frac{3}{2}$. Since this is the only candidate, the absolute minimum must be at $x = -\frac{3}{2}$.

The first-derivative test

If f' > 0 (resp. f' < 0) on an interval, then f is **increasing** (resp. **decreasing**) on that interval.

A function is called monotonic on an interval if it is either increasing or decreasing on that interval.

(first-derivative test) Suppose f'(a) = 0 and that f is differentiable near x = a.

- If f'(x) changes from > 0 to < 0 at x = a, then f(x) has a local maximum at x = a.
- If f'(x) changes from < 0 to > 0 at x = a, then f(x) has a local minimum at x = a.
- If f'(x) does not change sign at x = a, then f(x) has no local extremum at x = a.

Example 90. Consider $f(x) = x^3 + 2x^4$.

- (a) Find all critical points of f(x).
- (b) Then find all extrema (both local and absolute) when f is restricted to the interval [-1, 1].
- (c) On which intervals is f(x) increasing/decreasing?

Comment. This function is plotted to the right. That plot, however, is possibly misleading (at a glance it might seem like there is minimum at x = 0). After crunching the numbers, compare with the second plot below.

Solution.

(a) $f'(x) = 3x^2 + 8x^3 = x^2(3+8x)$

Solving f'(x) = 0, we find that the critical points are 0 and $-\frac{3}{8}$.

(b) The extreme values can only occur at 0, $-\frac{3}{8}$ (critical points) or at -1, 1 (endpoints).

x	-1		$-\frac{3}{8}$		0		1
f(x)	1	\checkmark	$-\frac{27}{2048} \approx -0.013$	$^{\checkmark}$	0	\searrow	3
f'(x)		—	0	+	0	+	

Hence, f on [-1, 1] has an absolute maximum of 3 at x = 1 and an absolute minimum of $-\frac{27}{2048}$ at $x = -\frac{3}{8}$. It further has a local maximum of 1 at x = -1.

(c) f is increasing on the open interval $(-3/8, \infty)$ and decreasing on the open interval $(-\infty, -3/8)$.

A plot that confirms our findings.

Armin Straub straub@southalabama.edu

Example 91. Consider $f(x) = \frac{x+1}{x^2+x+4}$.

- (a) Find all critical points of f(x).
- (b) Then find all (local and absolute) extrema when f is restricted to the interval [-4, 4].
- (c) On which intervals is f(x) increasing/decreasing?

Note. The denominator is never zero (for real x) so that the natural domain of f is $(-\infty, \infty)$.

Solution.

(a) $f'(x) = \frac{-(x-1)(x+3)}{(x^2+x+4)^2}$

Solving f'(x) = 0, we find that the critical points are 1 and -3.

(b) The extreme values can only occur at 1, -3 (critical points) or at -4, 4 (endpoints).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x	-4		-3		1		4
f'(x) 0 + 0	f(x)	$-\frac{3}{16} = -0.1875$	\searrow	$-\frac{1}{5}$	\nearrow	$\frac{1}{3}$	X	$\frac{5}{24} \approx 0.2083$
	f'(x)		—	0	+	0	_	

In conclusion:

- There is an absolute minimum of $-\frac{1}{5}$ at x = -3 and an absolute maximum of $\frac{1}{3}$ at x = 1.
- There is an additional local minimum of $\frac{5}{24}$ at x = 4 and a local maximum of $-\frac{3}{16}$ at x = -4.
- (c) f is increasing on the open interval (-3,1) and decreasing on the open intervals $(-\infty,-3)$ and $(1,\infty)$.

A plot that confirms our findings.

