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Introduction: Diagonals

• Given a series

F (x1, . . . , xd) =
∑

n1,...,nd>0

a(n1, . . . , nd)x
n1
1 · · ·x

nd
d ,

its diagonal coefficients are the coefficients a(n, . . . , n).

The diagonal coefficients of

1

1− x− y
=

∞∑
n=0

(x+ y)n

are the central binomial coefficients
(
2n
n

)
.

For comparison, their univariate generating function is

∞∑
n=0

(
2n

n

)
xn =

1√
1− 4x

.

EG
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Introduction: Rational generating functions

The Lucas numbers Ln have GF 2−x
1−x−x2 . Ln+1 = Ln + Ln−1

L0 = 2, L1 = 1
EG

• The sequences with rational GF are precisely the C-finite ones.

The Delannoy numbers have GF 1√
1−6x+x2 . Dn =

n∑
k=0

(
n

k

)(
n+ k

k

)
They are the diagonal of 1

1−x−y−xy .

EG

• The sequences with algebraic GF are precisely the diagonals of
2-variable rational functions.

The diagonal of a rational function is D-finite.

More generally, the diagonal of a D-finite function is D-finite.
F ∈ K[[x1, . . . , xd]] is D-finite if its partial derivatives span a finite-dimensional
vector space over K(x1, . . . , xd).

THM
Gessel,

Zeilberger,

Lipshitz

1981–88
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Introduction: Franel numbers

The Franel numbers
n∑
k=0

(
n

k

)3

are the diagonal of

1

1− x− y − z + 4xyz
.

Their GF is

1

1− 2x
2F1

( 1
3 ,

2
3

1

∣∣∣∣ 27x2

(1− 2x)3

)
.

EG

• Not at all unique! The Franel numbers are also the diagonal of

1

(1− x)(1− y)(1− z)− xyz
.
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Introduction: Apéry numbers

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2014
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Introduction: Apéry numbers

The Apéry numbers are the diagonal coefficients of

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
.

THM
S 2014

• Univariate generating function:

∑
n>0

A(n)xn =
17− x− z

4
√
2(1 + x+ z)3/2

3F2

( 1
2 ,

1
2 ,

1
2

1, 1

∣∣∣∣− 1024x

(1− x+ z)4

)
,

where z =
√
1− 34x+ x2.

• Well-developed theory of multivariate asymptotics e.g., Pemantle–Wilson

• Such diagonals are algebraic modulo pr. Furstenberg, Deligne ’67, ’84

Automatically leads to congruences such as

A(n) ≡

{
1 (mod 8), if n even,

5 (mod 8), if n odd.
Chowla–Cowles–Cowles ’80

Rowland–Yassawi ’13
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Fermat, Euler and Gauss congruences

a(n) satisfies the Fermat congruences if, for all primes p,

a(p) ≡ a(1) (mod p).

DEF

Classical: a(n) = an satisfies the Fermat congruences.EG

In fact, we know that these sequences satisfy stronger congruences:

a(n) satisfies the Euler congruences if, for all primes p,

a(pr) ≡ a(pr−1) (mod pr).

DEF

a(n) satisfies the Gauss congruences if, for all primes p,

a(mpr) ≡ a(mpr−1) (mod pr).

DEF

Equivalently,
∑
d|m

µ(md )a(d) ≡ 0 (modm).
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Gauss congruences

a(n) satisfies the Gauss congruences if, for all primes p,

a(mpr) ≡ a(mpr−1) (mod pr).

DEF

• a(n) = an

• a(n) = Ln Lucas numbers:
Ln+1 = Ln + Ln−1

L0 = 2, L1 = 1

• a(n) = Dn Delannoy numbers: Dn =
n∑
k=0

(
n

k

)(
n+ k

k

)

EG

• Later, we allow a(n) ∈ Q. If the Gauss congruences hold for all but finitely
many p, we say that the sequence (or its GF) has the Gauss property.

• Similarly, for multivariate sequences a(n), we require

a(mpr) ≡ a(mpr−1) (mod pr).

That is, for instance, for a(n1, n2),

a(m1p
r,m2p

r) ≡ a(m1p
r−1,m2p

r−1) (mod pr).
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More sequences satisfying Gauss congruences

a(mpr) ≡ a(mpr−1) (mod pr) (G)

• realizable sequences a(n), i.e., for some map T : X → X,

a(n) = #{x ∈ X : Tnx = x} “points of period n”
Everest–van der Poorten–Puri–Ward ’02, Arias de Reyna ’05

In fact, up to a positivity condition, (G) characterizes realizability.

• a(n) = trace(Mn) Jänichen ’21, Schur ’37; also: Arnold, Zarelua

where M is an integer matrix

• (G) is equivalent to exp

( ∞∑
n=1

a(n)

n
Tn

)
∈ Z[[T ]].

This is a natural condition in formal group theory.
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Minton’s theorem

f ∈ Q(x) has the Gauss property if and only if f is a Q-linear
combination of functions xu′(x)/u(x), with u ∈ Z[x].

THM
Minton,

2014

• If u(x) =
∏s
i=1(1− αix) then

x
u′(x)

u(x)
= −

s∑
i=1

αix

1− αix
= s−

s∑
i=1

1

1− αix
.

• Assuming the αi are distinct,

s∑
i=1

1

1− αix
=
∑
n>0

(
s∑
i=1

αni

)
xn =

∑
n>0

trace(Mn)xn,

where M is the companion matrix of
∏s
i=1(x− αi) = xsu(1/x).

• Minton: No new C-finite sequences with the Gauss property!

• Can we generalize from C-finite towards D-finite?
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The multivariate case

Let P,Q ∈ Z[x] with Q linear in each variable.

Then P/Q has the Gauss property if and only if N(P ) ⊆ N(Q).

THM
BHS

The Delannoy numbers Dn1,n2 are characterized by

1

1− x− y − xy
=

∞∑
n1,n2=0

Dn1,n2x
n1yn2 .

By the theorem, the following have the Gauss property:

N

1− x− y − xy
with N ∈ {1, x, y, xy}

In other words, for δ ∈ {0, 1}2,

Dmpr−δ ≡ Dmpr−1−δ (mod pr).

EG
Beukers,
Houben,
S 2017
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The multivariate case, cont’d

Let f1, . . . , fm ∈ Q(x) = Q(x1, . . . , xn) be nonzero. Then

x1 · · ·xm
f1 · · · fm

det

(
∂fj
∂xi

)
i,j=1,...,m

(D)

has the Gauss property.

THM
Beukers,
Houben,
S 2017

Suppose f ∈ Q(x) has the Gauss property. Can it be written as
a Q-linear combination of functions of the form (D)?

Q
BHS

• Yes, for n = 1, by Minton’s theorem.

• Yes, for f = P/Q with Q linear in all, or all but one, variables.

• Yes, for f = P/Q with Q in two variables and total degree 2.

Can
x(x+ y + y2 + 2xy2)

1 + 3x+ 3y + 2x2 + 2y2 + xy − 2x2y2
be written in that form?

EG
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Can
x(x+ y + y2 + 2xy2)

1 + 3x+ 3y + 2x2 + 2y2 + xy − 2x2y2
be written in that form?
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The multivariate case, cont’d

Let f1, . . . , fm ∈ Q(x) = Q(x1, . . . , xn) be nonzero. Then

x1 · · ·xm
f1 · · · fm

det

(
∂fj
∂xi

)
i,j=1,...,m

(D)

has the Gauss property.
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A hint of supercongruences

• a(n) =
(
2n
n

)
is the diagonal of 1

1−x−y . Hence,

a(mpr) ≡ a(mpr−1) (mod pr).

For primes p > 5, this actually holds modulo p3r.

For primes p, simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p > 5, Wolstenholme showed that this holds modulo p3.

EG

• Andrews proved a q-analog of this congruence.
• It is not well understood which other sequences (including Apéry-like

numbers) satisfy these stronger Gauss congruences.

George Andrews
q-analogs of the binomial coefficient congruences of Babbage, Wolstenholme and Glaisher
Discrete Mathematics 204, 1999
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Some open problems

• Which rational functions have the Gauss property?

A(npr) ≡ A(npr−1) (mod pr)

When are these necessarily combinations of x1···xm

f1···fm det
(
∂fj
∂xi

)
?

• Which rational functions satisfy supercongruences?

A(npr) ≡ A(npr−1) (mod pkr), k > 1

And can we prove these?

1

1− (x+ y + z) + 4xyz
,

1

1− (x+ y + z + w) + 27xyzw

• Is there a rational function in three variables with the ζ(3)-Apéry
numbers as diagonal?

Gauss congruences Armin Straub
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

F. Beukers, M. Houben, A. Straub
Gauss congruences for rational functions in several variables
Preprint, 2017. arXiv:1710.00423

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008
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Bonus

Apéry-like sequences
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Apéry numbers and the irrationality of ζ(3)

• The Apéry numbers 1, 5, 73, 1445, . . .

A(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)2

satisfy

(n+ 1)3A(n+ 1) = (2n+ 1)(17n2 + 17n+ 5)A(n)− n3A(n− 1).

ζ(3) =
∑∞

n=1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

B(n) =
n∑
k=0

(
n

k

)2(n+ k

k

)2
 n∑
j=1

1

j3
+

k∑
m=1

(−1)m−1

2m3
(
n
m

)(
n+m
m

)
 .

Then, B(n)
A(n) → ζ(3). But too fast for ζ(3) to be rational.

proof
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Zagier’s search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a, b, c) = (17, 5, 1) of

(n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − cn3un−1.

Are there other tuples (a, b, c) for which the solution defined by
u−1 = 0, u0 = 1 is integral?

Q
Beukers,

Zagier

• Essentially, only 14 tuples (a, b, c) found. (Almkvist–Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

3F2

( 1
2 , α, 1− α

1, 1

∣∣∣∣4Cαz) , 1

1− Cαz
2F1

(
α, 1− α

1

∣∣∣∣ −Cαz1− Cαz

)2

,

with α = 1
2 ,

1
3 ,

1
4 ,

1
6 and Cα = 24, 33, 26, 24 · 33)

• 6 sporadic solutions

• Similar (and intertwined) story for:
• (n+ 1)2un+1 = (an2 + an+ b)un − cn2un−1 (Beukers, Zagier)

• (n+ 1)3un+1 = (2n+ 1)(an2 + an+ b)un − n(cn2 + d)un−1 (Cooper)
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The six sporadic Apéry-like numbers

(a, b, c) A(n)

(17, 5, 1) Apéry numbers

∑
k

(
n

k

)2(n+ k

n

)2

(12, 4, 16)
∑
k

(
n

k

)2(2k
n

)2

(10, 4, 64) Domb numbers

∑
k

(
n

k

)2(2k
k

)(
2(n− k)
n− k

)

(7, 3, 81) Almkvist–Zudilin numbers

∑
k

(−1)k3n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3

(11, 5, 125)
∑
k

(−1)k
(
n

k

)3(4n− 5k

3n

)

(9, 3,−27)
∑
k,l

(
n

k

)2(n
l

)(
k

l

)(
k + l

n

)

Gauss congruences Armin Straub
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Supercongruences for Apéry numbers

• Chowla, Cowles, Cowles (1980) conjectured that, for primes p > 5,

A(p) ≡ 5 (mod p3).

• Gessel (1982) proved that A(mp) ≡ A(m) (mod p3).

The Apéry numbers satisfy the supercongruence (p > 5)

A(mpr) ≡ A(mpr−1) (mod p3r).

THM
Beukers,
Coster

’85, ’88
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For primes p, simple combinatorics proves the congruence(
2p

p

)
=
∑
k

(
p

k

)(
p

p− k

)
≡ 1 + 1 (mod p2).

For p > 5, Wolstenholme’s congruence shows that, in fact,(
2p

p

)
≡ 2 (mod p3).

EG
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Supercongruences for Apéry-like numbers

• Conjecturally, supercongruences like

A(mpr) ≡ A(mpr−1) (mod p3r)

hold for all Apéry-like numbers. Osburn–Sahu ’09

• Current state of affairs for the six sporadic sequences from earlier:

(a, b, c) A(n)

(17, 5, 1)
∑
k

(
n
k

)2(n+k
n

)2
Beukers, Coster ’87-’88

(12, 4, 16)
∑
k

(
n
k

)2(2k
n

)2
Osburn–Sahu–S ’16

(10, 4, 64)
∑
k

(
n
k

)2(2k
k

)(
2(n−k)
n−k

)
Osburn–Sahu ’11

(7, 3, 81)
∑
k(−1)k3n−3k

(
n
3k

)(
n+k
n

) (3k)!
k!3 open modulo p3

Amdeberhan–Tauraso ’16

(11, 5, 125)
∑
k(−1)k

(
n
k

)3(4n−5k
3n

)
Osburn–Sahu–S ’16

(9, 3,−27)
∑
k,l

(
n
k

)2(n
l

)(
k
l

)(
k+l
n

)
Gorodetsky ’18

Robert Osburn Brundaban Sahu

(University of Dublin) (NISER, India)
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Multivariate supercongruences

Define A(n) = A(n1, n2, n3, n4) by

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
=
∑
n∈Z4

>0

A(n)xn.

• The Apéry numbers are the diagonal coefficients.

• For p > 5, we have the multivariate supercongruences

A(npr) ≡ A(npr−1) (mod p3r).

THM
S 2014
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•
∑
n>0

a(n)xn = F (x) =⇒
∑
n>0

a(pn)xpn =
1

p

p−1∑
k=0

F (ζkpx) ζp = e2πi/p

• Hence, both A(npr) and A(npr−1) have rational generating function.
The proof, however, relies on an explicit binomial sum for the coefficients.
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• By MacMahon’s Master Theorem,

A(n) =
∑
k∈Z

(
n1
k

)(
n3
k

)(
n1 + n2 − k

n1

)(
n3 + n4 − k

n3

)
.

• Because A(n− 1) = A(−n,−n,−n,−n), we also find

A(mpr − 1) ≡ A(mpr−1 − 1) (mod p3r). Beukers ’85
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An infinite family of rational functions

Let λ ∈ Z`>0 with d = λ1 + . . .+ λ`. Define Aλ(n) by

1∏
16j6`

[
1−

∑
16r6λj

xλ1+...+λj−1+r

]
− x1x2 · · ·xd

=
∑
n∈Zd

>0

Aλ(n)x
n.

• If ` > 2, then, for all primes p,

Aλ(np
r) ≡ Aλ(npr−1) (mod p2r).

• If ` > 2 and max(λ1, . . . , λ`) 6 2, then, for primes p > 5,

Aλ(np
r) ≡ Aλ(npr−1) (mod p3r).

THM
S 2014

λ = (2, 2) λ = (2, 1)

1

(1− x1 − x2)(1− x3 − x4)− x1x2x3x4
1

(1− x1 − x2)(1− x3)− x1x2x3

EG

Gauss congruences Armin Straub
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Further examples

1

(1− x1 − x2)(1− x3)− x1x2x3

has as diagonal the Apéry-like numbers, associated with ζ(2),

B(n) =

n∑
k=0

(
n

k

)2(n+ k

k

)
.

EG

1

(1− x1)(1− x2) · · · (1− xd)− x1x2 · · ·xd

has as diagonal the numbers d = 3: Franel, d = 4: Yang–Zudilin

Yd(n) =

n∑
k=0

(
n

k

)d
.

EG

• In each case, we obtain supercongruences generalizing results of
Coster (1988) and Chan–Cooper–Sica (2010).
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23 / 25



A conjectural multivariate supercongruence

The coefficients Z(n) of

1

1− (x1 + x2 + x3 + x4) + 27x1x2x3x4
=
∑
n∈Z4

>0

Z(n)xn

satisfy, for p > 5, the multivariate supercongruences

Z(npr) ≡ Z(npr−1) (mod p3r).

CONJ
S 2014

• Here, the diagonal coefficients are the Almkvist–Zudilin numbers

Z(n) =
n∑
k=0

(−3)n−3k
(
n

3k

)(
n+ k

n

)
(3k)!

k!3
,

for which the univariate congruences are still open.
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

F. Beukers, M. Houben, A. Straub
Gauss congruences for rational functions in several variables
Preprint, 2017. arXiv:1710.00423

A. Straub
Multivariate Apéry numbers and supercongruences of rational functions
Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008
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