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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

[ ]
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e To each cell u in the diagram is assigned its hook.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub 2/33




Core partitions

e The integer partition (5,3,3,1) has Young diagram:

L]

e To each cell u in the diagram is assigned its hook.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub 2/33




Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’»—lhucnoo

e To each cell u in the diagram is assigned its hook.

e The hook length of u is the number of cells in its hook.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’»—lhucnoo

e To each cell u in the diagram is assigned its hook.
e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]
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e To each cell u in the diagram is assigned its hook.

e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

e A partition is (s, t)-core if it is both s-core and t-core.
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Core partitions

e The integer partition (5,3,3,1) has Young diagram:

2] 1]

’H.&cnoo

e To each cell u in the diagram is assigned its hook.
e The hook length of u is the number of cells in its hook.

e A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

e A partition is (s, t)-core if it is both s-core and t-core.

LEM If a partition is t-core, then it is also rt-core for r = 1,2,3...
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢ > 4.
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢ > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then

3 gt - [[E=LL

n=0 n=1 1- q

0
(n)q Zqzn(”+1)7 Zc;;(n)q”: l+g+2¢° +2¢* +¢® +2¢° + ¢ + ...
n=0 n=0

3
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢ > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then

3 gt - [[E=LL

n=0 n=1 1- q

0
(n)q Zqzn(”+1)7 Zc;;(n)q”: l+g+2¢° +2¢* +¢® +2¢° + ¢ + ...
n=0 n=0 n=0

Q Can we give a combinatorial proof of the Granville—=Ono result?
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The number of core partitions

e Using the theory of modular forms, Granville and Ono (1996) showed:

(The case t = p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

THM For any n > 0 there exists a t-core partition of n whenever ¢ > 4.

e If ¢;(n) is the number of ¢-core partitions of n, then

S = [T

1—q

0
(n)q Z qzn(”+1)7 Z cs(n)g" =1+q+2¢* +2¢* + " +2¢° + ¢* + ...
n=0 n=0 n=0

Q Can we give a combinatorial proof of the Granville—=Ono result?

COR The total number of t-core partitions is infinite.

Though this is probably the most complicated way possible to see that. ..
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime.
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is

1 s+t
s+t\ s )’
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is
1 s+t
s+t\ s )

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is

1 s+t
s+t\ s )’

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).

® Note that the number of (s, s + 1)-core partitions is the Catalan number

oo {2y _ 1 (241
fTs+1\ls ) 2s+1 s ’
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Counting core partitions

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is

1 s+t
s+t\ s )’

e Olsson and Stanton (2007): the largest size of such partitions is 55 (s> —1)(t* — 1).

® Note that the number of (s, s + 1)-core partitions is the Catalan number

oo {2y _ 1 (241
fTs+1\ls ) 2s+1 s ’

® Ford, Mai and Sze (2009) show that the number of self-conjugate (s, ¢)-core

partitions is
[s/2] + [t/2]
s/2] '
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs,;.
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs,;.

e He further conjectured that the largest possible size of an (s, s + 1)-core
partition into distinct parts is |s(s 4+ 1)/6], and that there is a unique such
largest partition unless s = 1 modulo 3, in which case there are two

partitions of maximum size.
e Amdeberhan also conjectured that the total size of these partitions is

Z F,F, Fy.
i+jthk=s+1
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Core partitions into distinct parts

e Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of ¢.

CONJ The number of (s, s+ 1)-core partitions into distinct parts equals
the Fibonacci number Fs,;.

e He further conjectured that the largest possible size of an (s, s + 1)-core
partition into distinct parts is |s(s 4+ 1)/6], and that there is a unique such
largest partition unless s = 1 modulo 3, in which case there are two

partitions of maximum size.
e Amdeberhan also conjectured that the total size of these partitions is

Z F,F, Fy.
i+jthk=s+1

EG 27 @DDQD:DEPLI_I_UH_UEHJ
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A two-parameter generalization

THM | et Ny(s) be the number of (s,ds — 1)-core partitions into dis-

tinct parts. Then, Ng(1) =1, Ng4(2) = d and
Nd(s) = Nd(S = 1) i de(S = 2).

e The case d = 1 settles Amdeberhan’s conjecture.
e This special case was independently also proved by Xiong, who
further shows the other claims by Amdeberhan.
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A two-parameter generalization

THM | et Ny(s) be the number of (s,ds — 1)-core partitions into dis-

tinct parts. Then, Ng(1) =1, Ng4(2) = d and
Nd(s) = Nd(S = 1) i de(S = 2).

e The case d = 1 settles Amdeberhan’s conjecture.
e This special case was independently also proved by Xiong, who
further shows the other claims by Amdeberhan.

EG The first few generalized Fibonacci polynomials Ny(s) are
1, d, 2d, d(d+2), d(3d+2), d(d*+5d+2),...

For d = 1, we recover the usual Fibonacci numbers.
For d = 2, we find Ny(s) = 2571,

e Nice proof (and more!) via abaci structures by Nath and Sellers (2016).
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The perimeter of a partition

DEF The perimeter of a partition is the maximum hook length in \.

EG | ‘
The partition has perimeter 7.
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The perimeter of a partition

DEF The perimeter of a partition is the maximum hook length in \.

EG
The partition | | has perimeter 7.

e Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

e The perimeter is the largest part plus the number of parts (minus 1).

e The rank is the largest part minus the number of parts.
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Euler’'s theorem and a simple analog

THM number of partitions of size n into distinct parts
Fuler = number of partitions of size n into odd parts
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Euler’'s theorem and a simple analog

THM

Euler

THM
S 2016

Though natural and easily proved, we have been unable to find this result in the literature.

number of partitions of size n into distinct parts
number of partitions of size n into odd parts

number of partitions of perimeter n into distinct parts
number of partitions of perimeter n into odd parts
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Euler’'s theorem and a simple analog

THM

Euler

THM
S 2016

number of partitions of size n into distinct parts
number of partitions of size n into odd parts

number of partitions of perimeter n into distinct parts
number of partitions of perimeter n into odd parts

Though natural and easily proved, we have been unable to find this result in the literature.

EG Partitions into distinct parts with perimeter 5:

LI IO D

Partitions into odd parts with perimeter 5:

LI TTT] [ []
[]
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Euler’'s theorem and a simple analog

THM

Euler

THM
S 2016

number of partitions of size n into distinct parts
number of partitions of size n into odd parts

number of partitions of perimeter n into distinct parts
number of partitions of perimeter n into odd parts
F,,  (Fibonacci)

Though natural and easily proved, we have been unable to find this result in the literature.

EG Partitions into distinct parts with perimeter 5:

LI IO D

Partitions into odd parts with perimeter 5:

LI TTT] [ []
[]
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.

EG number of partitions of size n into distinct parts
Fine with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

e Fu and Tang (2016) indeed prove some such refinements.

EG number of partitions of perimeter n into distinct parts
ol with maximum part M

2016
= number of partitions of perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1
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Refinements of Euler’s theorem

e Many refinements of Euler's theorem are known.
EG number of partitions of size n into distinct parts

Fi . .
e with maximum part M

= number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1

Q Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

e Fu and Tang (2016) indeed prove some such refinements.

EG number of partitions of perimeter n into distinct parts
ol with maximum part M

2016
= number of partitions of perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M + 1

Q Just coincidence? What about other partition theorems?
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Euler’'s pentagonal number theorem

e Let pg.(n) (respectively, pgo(n)) be the number of partitions of n
into an even (respectively, odd) number of distinct parts.

EG (=)™, ifn=3Im@Bm+1)
Euler — = ’ 2 B ’
Pd,e(n) = Pd,o(n) { 0, otherwise.
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Euler’'s pentagonal number theorem

e Let pg.(n) (respectively, pgo(n)) be the number of partitions of n
into an even (respectively, odd) number of distinct parts.

EG (=)™, ifn=3Im@Bm+1)
Euler — = ’ 2 B ’
Pd,e(n) = Pd,o(n) { 0, otherwise.

e Likewise, let g4(n) (respectively, g4,(n)) be the number of
partitions of perimeter n into an even (respectively, odd) number of
distinct parts.

EG (=)™, ifn=21(6m-3+1)
Fu, Tang — = ! 2 o ’
2016 qd’e(n) Qd’o<n) { 0, otherwise.
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Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.
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Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

proof Let A\ be a partition into distinct parts.
e Assume A has a cell u with hook length ¢t > s.

e Since A has distinct parts, the cell to the right of u has
hook length t — 1 or t — 2.

e It follows that A has a hook of length s or s + 1.
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Partitions of bounded perimeter

e The following very simple observation connects core partitions with
partitions of bounded perimeter.

LEM A partition into distinct parts is (s, s + 1)-core if and only if it
has perimeter strictly less than s.

proof Let A\ be a partition into distinct parts.
e Assume A has a cell u with hook length ¢t > s.

e Since A has distinct parts, the cell to the right of u has
hook length t — 1 or t — 2.

e It follows that A has a hook of length s or s + 1.
Ol

COR An (s,ds — 1)-core partition into distinct parts has perimeter at
most ds — 2.
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Summary

THM The number of (s, t)-core partitions is finite if and only if s and

Anderson

2002t are coprime. In that case, this number is
1 s+t
s+t\ s )

THME et Ny4(s) be the number of (s,ds — 1)-core partitions into dis-

tinct parts. Then, Ng(1) =1, Ng(2) = d and

Nd(s) = Nd(s = 1) + de(S = 2).

e In particular, there are F; many (s — 1, s)-core partitions into distinct parts,
e and 2°~! many (s,2s — 1)-core partitions into distinct parts.

Q  What is the number of (s,t)-core partitions into distinct parts
in general?
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\e|112|3|4 5|6 7 8 9 |10] 11 | 12
1|11 ]1|1]1]|1 1 1 1 1 1 1

2 |1|lw|2 ]| 3 || 4 o0 5 || 6 o0
3112|034 ]|0]| 5 6 w |7 8 o0
4 |10 3|0|H || 8 oo | 11 oo | 15 | o
5 1113145 |o0| 8|16 | 18 | 16 |co | 21 | 38
6 |[1|ow|ow|ow| 8 || 13 | oo oo | 32 |
711|145 |8 |16[13| oo | 21 | 64 |50 | 64 | 114
8 |1|ow| 6 |00 |18 |00 | 21 oo | 34 |00 | 101 ] o0
9 |15 |o0|11|16| 0| 64 | 34 | oo | 55]256| o0
10 |1 |00 | 7|0 ||| 50 | c© | 55 | oo | 8 | o0
11 116 | 8|15]21|32| 64 | 101 | 256 |89 | oo | 144
12 |10 || |38 | 0w |114| o© | o0 | 0 | 144 | ©
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\e|112|3|4 5|6 7 8 9 |10] 11 | 12
1|11 |1 1|11 1 1 1 1 1 1

2 |1l 2]|w| 3 || 4 o0 5 || 6 o0
3112 w03 |4]|0]| 5 6 w |7 8 o0
4 |10 3|0|bH || 8 oo | 11 oo | 15 | o
5 1113145 |o0| 8|16 | 18 | 16 |co | 21 | 38
6 |[1|ow|ow|ow| 8 || 13 | oo oo | 32 |
711|145 |8 |16[13| oo | 21 | 64 |50 | 64 | 114
8 |1|ow| 6 |00 |18 |00 | 21 oo | 34 | oo | 101 ] o0
9 |15 |o0|11|16| 0| 64 | 34 | oo |55 ]256| oo
10 |1 |0 | 7|0 ||| 50| o | B5 |0 | 8 | o
11116 | 8|15]21|32| 64 | 101 | 256 |89 | oo | 144
12 |10 || |38 | 0w |114| o© | o0 | 0 | 144 | ©
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\e|112|3|4 5|6 7 8 9 |10] 11 | 12
1|11 |1|1]1]|1 1 1 1 1 1 1

2 |1l 20| 3|w]| 4 o0 5 || 6 o0
31|23 |4 || 5 6 w |7 8 o0
4 |1|{o|3|0|bdH || 8 oo | 11 oo | 15 | o
5 1113145 |o0| 8|16 | 18 | 16 | | 21 | 38
6 |[1|ow|ow|ow| 8 || 13 | oo oo | 32 |
711|145 |8 |16[13| oo | 21 | 64 |50 | 64 | 114
8 |1|ow| 6 |00 |18 |00 | 21 oo | 34 | oo | 101 ] o0
9 |15 |o0|11|16| 0| 64 | 34 | oo |55 ]256| oo
10 |1 |0 | 7|0 ||| 50| o | B5 |0 | 8 | o
11116 | 8|15]21|32| 64 | 101 | 256 |89 | oo | 144
12 |10 || |38 | 0w |114| o© | o0 | 0 | 144 | ©
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\e|112|3|4 5|6 7 8 9 |10] 11 | 12
1|11 |11]1]|1 1 1 1 1 1 1

2 |1l 2]|w| 3 || 4 o0 5 || 6 o0
3112w 3|4 || 5 6 w |7 8 o0
4 |10 3|0|bH || 8 oo | 11 oo | 15 | o
5 1113145 |o0| 8|16 | 18 | 16 |co | 21 | 38
6 |[1|ow|ow|ow| 8 || 13 | oo oo | 32 |
711|145 |8 |16[13| oo | 21 | 64 |50 | 64 | 114
8 |1|ow| 6 |00 |18 |00 | 21 oo | 34 | oo | 101 ] o0
9 |15 |o0|11|16| 0| 64 | 34 | oo |55 ]256| oo
10 |1 |0 | 7|0 ||| 50| o | B5 |0 | 8 | o
11116 | 8|15]21|32| 64 | 101 | 256 |89 | oo | 144
12 |10 || |38 | 0w |114| o© | o0 | 0 | 144 | ©
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t 1123|456 7 8 9 10 | 11 12
1 /11111 1 1 1 1 1 1 1 1
2 |1|ow|2]|0|3|o0| 4 o0 5 || 6 o0
3112 |0 3|4 |0]| 5 6 o | 7] 8 o0
4 |1|o0|3|w]| 5 || 8 o | 11 oo | 15 | o
5 111345 || 8 16 18 16 | 0| 21 | 38
6 |1jow|ow|ow |8 || 13 | o | .0 |0 | 32 | @
7 lilal el @ [1al12] 21 50| 64 | 114
CONJ If 5 is odd, there are 2°~! many (s,s + 2)-core 4 | oo | 101 | oo
partitions into distinct parts. 5 1551256 | oo
Yan, Qin, Jin, Zhou (2016) have very recently proven this [ | 0 | 89 | 0

conjecture by analyzing order ideals in an associated poset 6 | 89 | oo | 144
introduced by Anderson.

Much simplified by Zaleski, Zeilberger (2016).

0 | oo | 144 | o©
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Enumerating (s, ?)-core partitions into distinct parts

Q  What is the number of (s,t)-core partitions into distinct parts?

s\t 1123|456 7 8 9 10 | 11 12
1 /1111 1 1 1 1 1 1 1 1
2 |1|ow|2]|0| 3 |ow]| 4 o0 5 || 6 o0
3112 |0 3|4 |0]| 5 6 o | 7] 8 o0
4 |1|o0| 3|0 | b || 8 o | 11 oo | 15 | o
5 1113145 |o0| 8|16 | 18 | 16 |co | 21 | 38
6 |1jow|ow|ow |8 || 13 | o | .0 |0 | 32 | @
7 lilal el @ [1al12] 21 50 | 64 | 114
CONJ If 5 is odd, there are 2°~! many (s,s + 2)-core 4 | oo | 101 | oo
partitions into distinct parts. 5 1551256 | oo
Yan, Qin, Jin, Zhou (2016) have very recently proven this [ | 0 | 89 | 0

conjecture by analyzing order ideals in an associated poset 6 | 89 | oo | 144
introduced by Anderson.

Much simplified by Zaleski, Zeilberger (2016).

o |oo | 144 | oo
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(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s + 2)-core partitions into distinct parts (s odd).

Q How many (s, s + 3)-core partitions into distinct parts?

e 1,3,00,8,18,00,50,101, 00,291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub 14 /.33
/




(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s + 2)-core partitions into distinct parts (s odd).
® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s + 3)-core partitions into distinct parts?

e 1,3,00,8,18,00,50,101, 00,291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .
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(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s + 2)-core partitions into distinct parts (s odd).

® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s + 3)-core partitions into distinct parts?

e 1,3,00,8,18,00,50,101, 00,291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .

® The largest size of (3n — 2,3n + 1)-core partitions into distinct parts appears to be

1 2
ﬁn(n —1)(9n + 10).
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(s,s + 3)-core partitions into distinct parts

THM 25— many (s, s + 2)-core partitions into distinct parts (s odd).

® The largest size of (2n — 1,2n + 1)-core partitions into distinct parts is

1 2
ﬂn(n —1)(5n + 6).

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

Q How many (s, s + 3)-core partitions into distinct parts?

e 1,3,00,8,18,00,50,101, 00,291, 557, o0, 1642, 3048, o0, 9116, 16607, . . .

® The largest size of (3n — 2,3n + 1)-core partitions into distinct parts appears to be

1
ﬁn(n2 —1)(9n + 10).
® The largest size of (3n — 1,3n + 2)-core partitions into distinct parts appears to be

1
ﬂn(9n3 +38n° + 39n — 14).
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The size of a random core partition

DEF : "
random Xsi¢ : size of a (s,t)-core partition
variables (d)
Xgy ¢ size of a (s,t)-core partition into distinct parts
A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
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The size of a random core partition

,E,dEDE. Xsi¢ : size of a (s,t)-core partition
variables
X;t) : size of a (s,t)-core partition into distinct parts
EG E(X ) _ (S — 1)(t — 1)(8 +i+ 1) conjectured by Armstrong
st) — 24 first proved by Johnson
For comparison, largest size is i(s2 -1 -1). (Olsson and Stanton, 2007)
EG E(X(d) ) — 1 FEF conjectured by Amdeberhan
s,5+1 o1 ik first proved by Xiong
st it jrk=s+1
1
= — ((bs —6)sFs11 —6(s+ 1)F
50F, 41 (( ) s+1 ( ) S)
EG 1

E( S(fis)+2) = m ((S = 1)(582 + 17s + 16)) Zaleski-Zeilberger

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences

Armin Straub 1




The size of a random core partition

,E,dEolr:,, X5t @ size of a (s,t)-core partition

)
variables

X;g : size of a (s,t)-core partition into distinct parts

e Zeilberger (2015): explicit moments for X,

e Zaleski (2016): explicit moments for X(Ei)ﬂ
(d)

e Zaleski-Zeilberger (2016): explicit moments for X ., ,

CONJ Centralizing and standardizing, the distribution of X, as s, — ©

Zeilberger

with s — ¢ fixed agrees with the one of

1 & A2+ B2
— N At O Ay, B,, independent, N(0,1).
s 7;1 R independen (0,1)

R The limiting distribution of Xﬁng is normal.

22 The limiting distribution of X%, is not normal. What is it?

Zeilberger
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Enumerating (s, ?)-core partitions into odd parts

Q  What is the number of (s, t)-core partitions into odd parts?

s\t|1]23]4|5]|6]|7 8 9 10 11 12
1 (1|11 (1 |1]1]1 1 1 1 1 1
2 11121212222 2 2 2 2 2
3 1|2|w| 4] 4 |0]| 6 6 0 8 8 0
4 (1|24 || 7|69 ] ]| 11 | 10 13 0
5 (112|147 |oo |17 12| 17 | 25 | 41 31
6 [1|2|o0| 6 |17 |31] 21 | 0 | 34 62 0
7T 1112|1619 (12|31 |c | 80 | 43 | 78 87 97
8 1126 |00 |17]21 |80 | oo |152| 78 | 124 o0
9 12|00 |11 |25 |00 |43 ]152| oo |404| 166 o0
10 |12 8|10|00 |34 |78] 78 |404| oo | 790 | 308
11 |12 8 | 13416287124 |166 | 790 | oo | 2140
12 12| |00 31|00 97| o | o0 | 3082140 | oo
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Enumerating (s, ?)-core partitions into odd parts

Q  What is the number of (s, t)-core partitions into odd parts?

s\t|1]23]4|5]|6]|7 8 9 10 11 12
1 (1|11 (1 |1]1]1 1 1 1 1 1
2 111222222 2 2 2 2 2
3 1|2|w| 4|4 |0| 6 6 0 8 8 0
4 1|24 |o0| 7|69 ] |11 | 10 13 0
5 (11214 |7 |oo |17 12| 17 | 25 | 41 31
6 [1|2|o0| 6 |17 |31] 21 | 0 | 34 62 0
7T 1112|1619 (12|31 |0 | 80 | 43 | 78 87 97
8 1126 |00 |17]21 |80 | co |152| 78 | 124 o0
9 12|00 |11|25] 00 |43 ]152| oo | 404 | 166 0
10 |12 8|10|00 |34 ]78] 78 |404| oo | 790 | 308
11 |1 (2| 8 | 1341|6287 124|166 | 790 | oo | 2140
12 12| |00 31|00 97| o | o0 | 3082140 | oo
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A modular supercongruence
for ;f5: An Apéry-like story

Joint work with:

Robert Osburn Wadim Zudilin
(University College Dublin)  (University of Newcastle/
Radboud Universiteit)
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 0) (1)

(n+1)2A(n+1) = (2n + 1)(17n% + 17n + 5)A(n) — n3A(n — 1).

satisfy
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

-2 0) (1)

(n+1)2A(n+1) = (2n + 1)(17n% + 17n + 5)A(n) — n3A(n — 1).

satisfy

THM ((3) = 3™ | 2 is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”—integers

I GIGUNHETS P =]

m

Then, % — ((3). But too fast for ((3) to be rational. O
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Hypergeometric series

EG Trivially, the Apéry numbers have the representation

-2 () ()

_ s -n,—n,n+1,n+1 1)
1,1,1

e Here, 4F3 is a hypergeometric series:

ay a = (a1)r---(ap)k 2
o pz>: (@) (ap)i ="
pq<b1,...,bq kz_o(bl)k"'(bq)kn!
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Hypergeometric series

EG Trivially, the Apéry numbers have the representation

-2 () ()

_ s -n,—n,n+1,n+1 1)
1,1,1

e Here, 4F3 is a hypergeometric series:

ai, ..., ap _ = (a1)k - - (ap)k 2"
qu< Z) =, (b1)g - (b 1!

b, ..., by P

e Similary, we have the truncated hypergeometric series

ai, ..., ap G (@) () 2"
qu( Z>M _,;] (b1)k -+~ (bg)k n!”

bi, ..., by
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A first connection to modular forms

e The Apéry numbers A(n) satisfy 1,5,73,1145, . ..
' (27)n" (37) _ S An) ( n'*(m)n'?(67) >”
n(rn°(6r) = nt2(27)n'2(37)
| I | =
modular form modular function
1+ 5q + 13¢% + 23¢°% + O(q*) q — 12¢2% + 664> + O(q?) q = e2™iT

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub 20




A first connection to modular forms

e The Apéry numbers A(n) satisfy

' (2m)n"(37) _ oy (20 (67) \"
PG~ 2 )I<n12(2'r)7712(37)>|

modular function

1,5,73,1145, . ..

modular form

1+ 5q + 13¢% + 23¢°% + O(q%)

q— 12¢% + 66¢° + O(q*) q = 277

EG  As a consequence, with z = v/1 — 34z + 22,

17—z —2 o o o
An)z" = ———— T —— 3 Fp [ 27272
2 A = e a8

_ 1024z
(l-—z+2)*)"

* Context: f(7) modular form of (integral) weight k
x(7) modular function

y(x) such that y(xz(7)) = f(7)

Then y(z) satisfies a linear differential equation of order k + 1.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences
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A second connection to modular forms

THM For primes p > 2, the Apéry numbers satisfy
Ahlgren—
Ono

4 (fjgl) =a(p)  (mody?)

where a(n) are the Fourier coefficients of the Hecke eigenform

n(2r)*nr)* = Y a(n)q"
n=1

of weight 4 for the modular group I'y(8).

e conjectured by Beukers '87, and proved modulo p

e similar congruences modulo p for other Apéry-like numbers
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The “super” in these congruences

Fourier coefficients a(p)

Apéry sequence A(n)
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The “super” in these congruences

Fourier coefficients a(p)

i
point counts on modular curves modulo p
i
character sums
i
Gaussian hypergeometric series
i
harmonic sums
i
truncated hypergeometric series
i

Apéry sequence A(n)
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The “super” in these congruences

Fourier coefficients a(p)

I

point counts on modular curves modulo p

i equalities
character sums

I

Gaussian hypergeometric series

I

harmonic sums
n “easy” mod p

truncated hypergeometric series

i
Apéry sequence A(n)
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Kilbourn’s extension of the Ahlgren—Ono supercongruence

THM 1111
i (22 220) =a(p) (mod p),
1,1, 1 i

for primes p > 2. Again, a(n) are the Fourier coefficients of

n(2r)'n@r)* = ) a(n)q".

n=1
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Kilbourn’s extension of the Ahlgren—Ono supercongruence

N[

THM 111
Kilbourn F 27 20 2
2006 443 <

1,1,1

1) — i) (pmacl 5B

for primes p > 2. Again, a(n) are the Fourier coefficients of

n(2r)'n@r)* = ) a(n)q".

e This result proved the first of 14 related supercongruences
conjectured by Rodriguez-Villegas (2001) between
e truncated hypergeometric series 4F3 and
e Fourier coefficients of modular forms of weight 4.
e Despite considerable progress, 11 of these remain open.
McCarthy (2010), Fuselier-McCarthy (2016) prove one each; McCarthy (2010) proves “half” of all 14.
e The 14 supercongruence conjectures were complemented with 4 + 4
conjectures for o F and 3F5.
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A supercongruence for ¢F;

THM 11 1 1 1 1 .
0sz E 27 27 27 20 20 2 1 =} d
2017 645 ( 1,1,1,1, 1 >p_1 (p) (mod p )7

for primes p > 2. Here, b(n) are the Fourier coefficients of

0(r)*n(47)* +8n(4m)'? = n(27)"*+32n(2r)"n(87)° = 3 b(n)q

n=1

the unique newform in Sg(I'o(8)).

n
)
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A supercongruence for ¢F;

THM L1111
202202
0sz 6F5<

2017 1.1.1 71 b(p) (mod pg)a

)
p—1

for primes p > 2. Here, b(n) are the Fourier coefficients of

0(r)*n(47)* +8n(4m)'? = n(27)"*+32n(2r)"n(87)° = 3 b(n)q

n=1

the unique newform in Sg(I'o(8)).

e Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p°.

n
)
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A supercongruence for ¢F;

THM 111111
0sz F 29 929 929 29 29 9
28 65<11111

1) ) (fmedl )

for primes p > 2. Here, b(n) are the Fourier coefficients of

n(7)8n(47) +-8n(47)'? = n(2r)12+32n(27)"y i

n=1

the unique newform in Sg(I'o(8)).

e Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p°.

e A result of Frechette, Ono and Papanikolas expresses the b(p) in terms of
Gaussian hypergeometric functions.

e Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p? in terms of sums involving harmonic sums.
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A brief impression of the available ingredients

THM |n terms of Gaussian hypergeometric series,

b(p) = —p°6F5(1) + p*aFs(1) + p*2 F1(1) + p.

e Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).

e Here, ¢, is the quadratic character mod p, €, the trivial character, and

p

ni1Fn () = i1 Fy <¢pé ¢p.,. ces Op

ps -y Ep

the finite field version of

11
TR
n+11n 212

g ey

N

1
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A brief impression of the available ingredients

THM |n terms of Gaussian hypergeometric series,

b(p) = —p°6F5(1) + p*aFs(1) + p*2 F1(1) + p.

e Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).

e Here, ¢, is the quadratic character mod p, €, the trivial character, and

x )
ps ey Ep »

ni1Fn () = i1 Fy <¢pé Gpy s Gp

the finite field version of

S
—~
3
S~—

|
|
s
o
e
—~
S~—
I
o
e
7N
|
N
0
N|=
wh—t
=

1)p_1 (mod p).
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A brief impression of the available ingredients, cont’d
‘:)'I;IM For primes p > 2 and ¢ > 2,
Schneider

20 —p* Py (1) = p?Xe(p) + pYe(p) + Ze(p)  (mod p?).

e With m = (p — 1)/2, the right-hand sides are
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A brief impression of the available ingredients, cont’d

THM For primes p > 2 and £ > 2
Osburn
Schneider

20 —p* P 1(1) = PP Xe(p) + Ye(p) + Ze(p)  (mod p?).
e With m = (p — 1)/2, the right-hand sides are

111 1 1 1
7 . 2'2) 2202721
z(P) 20424 1( 1,1,1,1, 1 )ma

k=0

m 14

2 <m+k> < ) (1+4€k( m+k_Hk)
k

k=0

+ 202k% (Hyip — Hy)? — R2(HS),, — HP)).

i <m+k> <k)e(1 — Ck(2Hy — Hypsr, — Hynt),
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A harmonic identity

THM n 2 2
n+k n
> (1—2k(2Hy — Hpir, — Ho)) = 1
k k
k=0
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

e As Nesterenko (1996), consider the partial fraction decomposition

H] (t—=3)? S By,
R(t):HJOtJr] Z(H—k t+k:)'

k=0
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

e As Nesterenko (1996), consider the partial fraction decomposition

R(t) = [Tt -5)? & < Ay, By, )

[[o+5)? Z\{t+k)? t+k
e One finds n+k2n2
A, =

By, = 2Ay (2Hy, — Hyqr — Hoi).
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

e As Nesterenko (1996), consider the partial fraction decomposition

[T t-5)7 & ( Ay By )

= g = 0 T
[Tt +4)? —\(t+k)? t+k
e One finds n+k n\ 2
A, =

By, = 2Ay (2Hy, — Hyqr — Hoi).

e The residue sum theorem applied to tR(t) implies:

R(t) =

n
(A —kBy) = > ResgtR(t) = —Res, tR(t) = 1
k=0 finite poles x
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A harmonic identity

THM n 2, \ 2
Z (n ' k) <n> (1—2k(2Hy — Hpir, — Ho)) = 1
= k k

As Nesterenko (1996), consider the partial fraction decomposition

[T t-5)7 & ( Ay By )

_n ;g — A
[[o+5)? Z\{t+k)? t+k
One finds e n+ kN2 /n)\>
k = k' k; )

By, = 2Ay (2Hy, — Hyqr — Hoi).

R(t) =

The residue sum theorem applied to tR(t) implies:

i (A —kBp) = > ResytR(t) = —Resy, tR(t) = 1
k=0

finite poles x

e Only needed modulo p? and n = (p — 1)/2 for Kilbourn's congruence.
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A harmonic congruence

e Using identities similarly obtained from partial fractions, the ¢Fj5
congruence can be reduced to:

LEM

05z S n+k n\?
2017 Z < > (k) (1 - 3k(2Hk — Hpyp — Hn—k))

k=0
=5 (%) () mard

for primes p>2and n = (p —1)/2.
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A harmonic congruence

e Using identities similarly obtained from partial fractions, the ¢Fj5
congruence can be reduced to:

LEM

e = n+ k: n\>
2017 Z k (1 - 3k(2Hk — Hpyp — Hn—k))

k=0
Eé(”l’“)Q(Z)Q (ot

for primes p>2and n = (p —1)/2.

e While identities can (now) be verified algorithmically, no algorithms
are available for proving such congruences.
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Paule—Schneider harmonic sums

DEF

n L
i) = 35 (1) (1 ekt — H,-0)

2003

o These are integer sequences: C1(n) =1, Ca(n) =0, C3(n) = (—1)",

can-cr (). e -r 50 (1
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Paule—Schneider harmonic sums

DEF

n L
i) = 35 (1) (1 ekt — H,-0)

2003

k=0
LEM n 2
4 +k\ (2K
0SZ '17; —(—1)" n n
. o Celn) = (=1) ;O(k) ( k )(n)

‘05

e Open question: are there single-sum hypergeometric expressions for
Cy¢(n) when £ > 77
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Another Apéry supercongruence

0I.SIZEI\'/lI7 For all odd primes p,
-1 —1

e Modular parametrizations by weight 2 modular forms of level 6 and 7.
e |n other words,

O(Zﬂn:k): Z() (") () moas

1=

k
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Another Apéry supercongruence

LEM For all odd primes p,
0SZ '17

A <p;1> =C (13;1) (mod p?).

Modular parametrizations by weight 2 modular forms of level 6 and 7.
In other words,

(LY = £ (1))

1=

k

Proving this congruence is easy once we replace the right-hand side with

z”: 3n + 1 n+k\*

i .
Again, let us lament the lack of an algorithmic approach to such
congruences.
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An irrational equality

LEM K
A(n

=

5506

X ( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))
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An irrational equality

LEM K
A(n

=

5506

x( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))

e This arises from a construction of linear forms in {(3) due to Ball. If
nl? (2t +n) HJ (t—J)- H?:l(t +n+j)
[0t + )"

(A B G B
t+k)F  (t+ k)P (t+R2 t+k)

k=0
0
~
then E R(t) = un((3) + v,
t=1
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An irrational equality

LEM K
A(n

=

5506

x( + (n— 2k)(5Hg — 5Hp—t, — Hpsk + Hon—i))

e This arises from a construction of linear forms in {(3) due to Ball. If
n!? (2t +n) HJ (t=7)- H?:l(t +n+J)
[0t + )"

$( Ao B G B
A\ k) Gt k? T k)

then Z R(t) = un((3) + vy.

° Remarkably, the linear forms agree with the ones obtained from
Nesterenko's construction:

A( = *un = Z Bk
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Outlook

e Can we extend the congruence

111111
GF 2727 27 20 20 2
1,1,1,1,1

and show that it holds modulo p°?

Special relevance of p*: by Weil's bounds, |b(p)| < 2p®/?

e Can the algorithmic approaches for A = B be adjusted to A = B?

e Why do these supercongruences hold?

Very promising explanation suggested by Roberts, Rodriguez-Villegas,
Watkins (2017) in terms of gaps between Hodge numbers of an associated
motive.
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

Armin Straub
Core partitions into distinct parts and an analog of Euler’s theorem
European Journal of Combinatorics, Vol. 57, 2016, p. 40-49

Robert Osburn, Armin Straub and Wadim Zudilin
A modular supercongruence for ¢ F5: An Apéry-like story
Preprint, 2017. arXiv:1701.04098
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