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Core partitions

• The integer partition p5, 3, 3, 1q has Young diagram:

• To each cell u in the diagram is assigned its hook.
• The hook length of u is the number of cells in its hook.

• A partition is t-core if no cell has hook length t.
For instance, the above partition is 7-core.

• A partition is ps, tq-core if it is both s-core and t-core.

If a partition is t-core, then it is also rt-core for r “ 1, 2, 3 . . .LEM
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The number of core partitions

• Using the theory of modular forms, Granville and Ono (1996) showed:
(The case t “ p of this completed the classification of simple groups with defect zero Brauer p-blocks.)

For any n ě 0 there exists a t-core partition of n whenever t ě 4.THM

• If ctpnq is the number of t-core partitions of n, then

8
ÿ

n“0

ctpnqq
n “

8
ź

n“1

p1´ qtnqt

1´ qn
.

8
ÿ

n“0

c2pnqq
n “

8
ÿ

n“0

q
1
2
npn`1q,

8
ÿ

n“0

c3pnqq
n “ 1` q ` 2q2 ` 2q4 ` q5 ` 2q6 ` q8 ` . . .

Can we give a combinatorial proof of the Granville–Ono result?Q

The total number of t-core partitions is infinite.COR

Though this is probably the most complicated way possible to see that. . .
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Counting core partitions

The number of ps, tq-core partitions is finite if and only if s and
t are coprime.

In that case, this number is

1

s` t

ˆ

s` t

s

˙

.

THM
Anderson

2002

• Olsson and Stanton (2007): the largest size of such partitions is 1
24
ps2´ 1qpt2´ 1q.

• Note that the number of ps, s` 1q-core partitions is the Catalan number

Cs “
1

s` 1

˜

2s

s

¸

“
1

2s` 1

˜

2s` 1

s

¸

.

• Ford, Mai and Sze (2009) show that the number of self-conjugate ps, tq-core
partitions is

˜

ts{2u` tt{2u

ts{2u

¸

.
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Core partitions into distinct parts

• Amdeberhan raises the interesting problem of counting the number of
special partitions which are t-core for certain values of t.

The number of ps, s`1q-core partitions into distinct parts equals
the Fibonacci number Fs`1.

CONJ

• He further conjectured that the largest possible size of an ps, s` 1q-core
partition into distinct parts is tsps` 1q{6u, and that there is a unique such
largest partition unless s ” 1 modulo 3, in which case there are two
partitions of maximum size.

• Amdeberhan also conjectured that the total size of these partitions is
ÿ

i`j`k“s`1

FiFjFk.

s“5
F6“8 H

EG
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A two-parameter generalization

Let Ndpsq be the number of ps, ds´ 1q-core partitions into dis-
tinct parts. Then, Ndp1q “ 1, Ndp2q “ d and

Ndpsq “ Ndps´ 1q ` dNdps´ 2q.

THM
S 2016

• The case d “ 1 settles Amdeberhan’s conjecture.
• This special case was independently also proved by Xiong, who

further shows the other claims by Amdeberhan.

The first few generalized Fibonacci polynomials Ndpsq are

1, d, 2d, dpd` 2q, dp3d` 2q, dpd2 ` 5d` 2q, . . .

For d “ 1, we recover the usual Fibonacci numbers.
For d “ 2, we find N2psq “ 2s´1.

EG

• Nice proof (and more!) via abaci structures by Nath and Sellers (2016).
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The perimeter of a partition

The perimeter of a partition is the maximum hook length in λ.DEF

The partition has perimeter 7.
EG

• Introduced (up to a shift by 1) by Corteel and Lovejoy (2004) in their
study of overpartitions.

• The perimeter is the largest part plus the number of parts (minus 1).

• The rank is the largest part minus the number of parts.
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Euler’s theorem and a simple analog

number of partitions of size n into distinct parts
“ number of partitions of size n into odd parts

THM
Euler

number of partitions of perimeter n into distinct parts
“ number of partitions of perimeter n into odd parts

“ Fn (Fibonacci)

THM
S 2016

Though natural and easily proved, we have been unable to find this result in the literature.

Partitions into distinct parts with perimeter 5:

Partitions into odd parts with perimeter 5:

EG
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Refinements of Euler’s theorem

• Many refinements of Euler’s theorem are known.

number of partitions of size n into distinct parts
with maximum part M

“ number of partitions of size n into odd parts
such that the maximum part plus twice the number of parts is 2M`1

EG
Fine

Do similarly interesting refinements exist for partitions into dis-
tinct (respectively odd) parts with perimeter M?

Q

• Fu and Tang (2016) indeed prove some such refinements.

number of partitions of perimeter n into distinct parts
with maximum part M

“ number of partitions of perimeter n into odd parts
such that the maximum part plus twice the number of parts is 2M`1

EG
Fu, Tang

2016

Just coincidence? What about other partition theorems?Q
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Euler’s pentagonal number theorem

• Let pd,epnq (respectively, pd,opnq) be the number of partitions of n
into an even (respectively, odd) number of distinct parts.

pd,epnq ´ pd,opnq “

"

p´1qm, if n “ 1
2mp3m˘ 1q,

0, otherwise.

EG
Euler

• Likewise, let qd,epnq (respectively, qd,opnq) be the number of
partitions of perimeter n into an even (respectively, odd) number of
distinct parts.

qd,epnq ´ qd,opnq “

"

p´1qm, if n “ 1
2p6m´ 3˘ 1q,

0, otherwise.

EG
Fu, Tang

2016
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Partitions of bounded perimeter

• The following very simple observation connects core partitions with
partitions of bounded perimeter.

A partition into distinct parts is ps, s ` 1q-core if and only if it
has perimeter strictly less than s.

LEM

Let λ be a partition into distinct parts.

• Assume λ has a cell u with hook length t ě s.

• Since λ has distinct parts, the cell to the right of u has
hook length t´ 1 or t´ 2.

• It follows that λ has a hook of length s or s` 1.

proof

An ps, ds´ 1q-core partition into distinct parts has perimeter at
most ds´ 2.

COR
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Summary

The number of ps, tq-core partitions is finite if and only if s and
t are coprime. In that case, this number is

1

s` t

ˆ

s` t

s

˙

.

THM
Anderson

2002

Let Ndpsq be the number of ps, ds´ 1q-core partitions into dis-
tinct parts. Then, Ndp1q “ 1, Ndp2q “ d and

Ndpsq “ Ndps´ 1q ` dNdps´ 2q.

THM
S 2016

• In particular, there are Fs many ps´ 1, sq-core partitions into distinct parts,
• and 2s´1 many ps, 2s´ 1q-core partitions into distinct parts.

What is the number of ps, tq-core partitions into distinct parts
in general?

Q
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Enumerating ps, tq-core partitions into distinct parts

What is the number of ps, tq-core partitions into distinct parts?Q

szt 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 8 2 8 3 8 4 8 5 8 6 8

3 1 2 8 3 4 8 5 6 8 7 8 8

4 1 8 3 8 5 8 8 8 11 8 15 8

5 1 3 4 5 8 8 16 18 16 8 21 38

6 1 8 8 8 8 8 13 8 8 8 32 8

7 1 4 5 8 16 13 8 21 64 50 64 114

8 1 8 6 8 18 8 21 8 34 8 101 8

9 1 5 8 11 16 8 64 34 8 55 256 8

10 1 8 7 8 8 8 50 8 55 8 89 8

11 1 6 8 15 21 32 64 101 256 89 8 144

12 1 8 8 8 38 8 114 8 8 8 144 8

If s is odd, there are 2s´1 many ps, s ` 2q-core
partitions into distinct parts.

CONJ

Yan, Qin, Jin, Zhou (2016) have very recently proven this
conjecture by analyzing order ideals in an associated poset
introduced by Anderson.

Much simplified by Zaleski, Zeilberger (2016).
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ps, s` 3q-core partitions into distinct parts

2s´1 many ps, s` 2q-core partitions into distinct parts (s odd).THM

• The largest size of p2n´ 1, 2n` 1q-core partitions into distinct parts is

1

24
npn2

´ 1qp5n` 6q.

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

How many ps, s` 3q-core partitions into distinct parts?Q

• 1, 3,8, 8, 18,8, 50, 101,8, 291, 557,8, 1642, 3048,8, 9116, 16607, . . .

• The largest size of p3n´ 2, 3n` 1q-core partitions into distinct parts appears to be

1

24
npn2

´ 1qp9n` 10q.

• The largest size of p3n´ 1, 3n` 2q-core partitions into distinct parts appears to be

1

24
np9n3

` 38n2
` 39n´ 14q.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
14 / 33



ps, s` 3q-core partitions into distinct parts

2s´1 many ps, s` 2q-core partitions into distinct parts (s odd).THM

• The largest size of p2n´ 1, 2n` 1q-core partitions into distinct parts is

1

24
npn2

´ 1qp5n` 6q.

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

How many ps, s` 3q-core partitions into distinct parts?Q

• 1, 3,8, 8, 18,8, 50, 101,8, 291, 557,8, 1642, 3048,8, 9116, 16607, . . .

• The largest size of p3n´ 2, 3n` 1q-core partitions into distinct parts appears to be

1

24
npn2

´ 1qp9n` 10q.

• The largest size of p3n´ 1, 3n` 2q-core partitions into distinct parts appears to be

1

24
np9n3

` 38n2
` 39n´ 14q.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
14 / 33



ps, s` 3q-core partitions into distinct parts

2s´1 many ps, s` 2q-core partitions into distinct parts (s odd).THM

• The largest size of p2n´ 1, 2n` 1q-core partitions into distinct parts is

1

24
npn2

´ 1qp5n` 6q.

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

How many ps, s` 3q-core partitions into distinct parts?Q

• 1, 3,8, 8, 18,8, 50, 101,8, 291, 557,8, 1642, 3048,8, 9116, 16607, . . .

• The largest size of p3n´ 2, 3n` 1q-core partitions into distinct parts appears to be

1

24
npn2

´ 1qp9n` 10q.

• The largest size of p3n´ 1, 3n` 2q-core partitions into distinct parts appears to be

1

24
np9n3

` 38n2
` 39n´ 14q.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
14 / 33



ps, s` 3q-core partitions into distinct parts

2s´1 many ps, s` 2q-core partitions into distinct parts (s odd).THM

• The largest size of p2n´ 1, 2n` 1q-core partitions into distinct parts is

1

24
npn2

´ 1qp5n` 6q.

Now, also proven by Yan, Qin, Jin, Zhou (2016) and Zaleski, Zeilberger (2016).

How many ps, s` 3q-core partitions into distinct parts?Q

• 1, 3,8, 8, 18,8, 50, 101,8, 291, 557,8, 1642, 3048,8, 9116, 16607, . . .

• The largest size of p3n´ 2, 3n` 1q-core partitions into distinct parts appears to be

1

24
npn2

´ 1qp9n` 10q.

• The largest size of p3n´ 1, 3n` 2q-core partitions into distinct parts appears to be

1

24
np9n3

` 38n2
` 39n´ 14q.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
14 / 33



The size of a random core partition

Xs,t : size of a ps, tq-core partition

X
pdq
s,t : size of a ps, tq-core partition into distinct parts

DEF
random
variables
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The size of a random core partition

Xs,t : size of a ps, tq-core partition

X
pdq
s,t : size of a ps, tq-core partition into distinct parts

DEF
random
variables

EpXs,tq “
ps´ 1qpt´ 1qps` t` 1q

24
conjectured by Armstrong

first proved by Johnson

For comparison, largest size is 1
24
ps2 ´ 1qpt2 ´ 1q. (Olsson and Stanton, 2007)

EG

EpX
pdq
s,s`1q “

1

Fs`1

ÿ

i`j`k“s`1

FiFjFk

“
1

50Fs`1
pp5s´ 6qsFs`1 ´ 6ps` 1qFsq

EG
conjectured by Amdeberhan

first proved by Xiong

EpX
pdq
s,s`2q “

1

128

`

ps´ 1qp5s2 ` 17s` 16q
˘EG

Zaleski-Zeilberger
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The size of a random core partition

Xs,t : size of a ps, tq-core partition

X
pdq
s,t : size of a ps, tq-core partition into distinct parts

DEF
random
variables

• Zeilberger (2015): explicit moments for Xs,t

• Zaleski (2016): explicit moments for X
pdq
s,s`1

• Zaleski-Zeilberger (2016): explicit moments for X
pdq
s,s`2

Centralizing and standardizing, the distribution of Xs,t as s, t Ñ 8

with s´ t fixed agrees with the one of

1

4π2

8
ÿ

n“1

A2
n `B

2
n

n2
, An, Bn independent, Np0, 1q.

CONJ
Zeilberger

The limiting distribution of X
pdq
s,s`1 is normal.CONJ

Zaleski

The limiting distribution of X
pdq
s,s`2 is not normal. What is it?Q

Zaleski
Zeilberger
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Enumerating ps, tq-core partitions into odd parts

What is the number of ps, tq-core partitions into odd parts?Q

szt 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 2 2 2 2 2 2 2 2

3 1 2 8 4 4 8 6 6 8 8 8 8

4 1 2 4 8 7 6 9 8 11 10 13 8

5 1 2 4 7 8 17 12 17 25 8 41 31

6 1 2 8 6 17 8 31 21 8 34 62 8

7 1 2 6 9 12 31 8 80 43 78 87 97

8 1 2 6 8 17 21 80 8 152 78 124 8

9 1 2 8 11 25 8 43 152 8 404 166 8

10 1 2 8 10 8 34 78 78 404 8 790 308

11 1 2 8 13 41 62 87 124 166 790 8 2140

12 1 2 8 8 31 8 97 8 8 308 2140 8
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A modular supercongruence
for 6F5: An Apéry-like story

6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” bppq pmod p3q

Joint work with:

Robert Osburn Wadim Zudilin
(University College Dublin) (University of Newcastle/

Radboud Universiteit)
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Apéry numbers and the irrationality of ζp3q

• The Apéry numbers 1, 5, 73, 1445, . . .

Apnq “
n
ÿ

k“0

ˆ

n

k

˙2ˆn` k

k

˙2

satisfy

pn` 1q3Apn` 1q “ p2n` 1qp17n2 ` 17n` 5qApnq ´ n3Apn´ 1q.

ζp3q “
ř8

n“1
1
n3 is irrational.THM

Apéry ’78

The same recurrence is satisfied by the “near”-integers

Bpnq “
n
ÿ

k“0

ˆ

n

k

˙2ˆn` k

k

˙2
˜

n
ÿ

j“1

1

j3
`

k
ÿ

m“1

p´1qm´1

2m3
`

n
m

˘`

n`m
m

˘

¸

.

Then, Bpnq
Apnq Ñ ζp3q. But too fast for ζp3q to be rational.

proof
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Hypergeometric series

Trivially, the Apéry numbers have the representation

Apnq “
n
ÿ

k“0

ˆ

n

k

˙2ˆn` k

k

˙2

“ 4F3

ˆ

´n,´n, n` 1, n` 1

1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

.

EG

• Here, 4F3 is a hypergeometric series:

pFq

ˆ

a1, . . . , ap
b1, . . . , bq

ˇ

ˇ

ˇ

ˇ

z

˙

“

8
ÿ

k“0

pa1qk ¨ ¨ ¨ papqk
pb1qk ¨ ¨ ¨ pbqqk

zn

n!
.

• Similary, we have the truncated hypergeometric series

pFq

ˆ

a1, . . . , ap
b1, . . . , bq

ˇ

ˇ

ˇ

ˇ

z

˙

M

“

M
ÿ

k“0

pa1qk ¨ ¨ ¨ papqk
pb1qk ¨ ¨ ¨ pbqqk

zn

n!
.
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A first connection to modular forms

• The Apéry numbers Apnq satisfy 1, 5, 73, 1145, . . .

η7p2τqη7p3τq

η5pτqη5p6τq

1 ` 5q ` 13q2 ` 23q3 ` Opq4q

modular form

“
ÿ

ně0

Apnq

ˆ

η12pτqη12p6τq

η12p2τqη12p3τq

˙n

q ´ 12q2 ` 66q3 ` Opq4q q “ e2πiτ

modular function

.

As a consequence, with z “
?

1´ 34x` x2,

ÿ

ně0

Apnqxn “
17´ x´ z

4
?

2p1` x` zq3{2
3F2

ˆ 1
2 ,

1
2 ,

1
2

1, 1

ˇ

ˇ

ˇ

ˇ

´
1024x

p1´ x` zq4

˙

.

EG

• Context:
fpτq modular form of (integral) weight k
xpτq modular function
ypxq such that ypxpτqq “ fpτq

Then ypxq satisfies a linear differential equation of order k ` 1.
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A second connection to modular forms

For primes p ą 2, the Apéry numbers satisfy

A

ˆ

p´ 1

2

˙

” appq pmod p2q

where apnq are the Fourier coefficients of the Hecke eigenform

ηp2τq4ηp4τq4 “
8
ÿ

n“1

apnqqn

of weight 4 for the modular group Γ0p8q.

THM
Ahlgren–

Ono
’00

• conjectured by Beukers ’87, and proved modulo p

• similar congruences modulo p for other Apéry-like numbers
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The “super” in these congruences

Fourier coefficients appq

Œ

point counts on modular curves modulo p
Œ

character sums
Œ

Gaussian hypergeometric series
Œ

harmonic sums
Œ

truncated hypergeometric series
Œ

Apéry sequence Apnq

equalities

“easy” mod p
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Apéry sequence Apnq

equalities

“easy” mod p

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
22 / 33



The “super” in these congruences

Fourier coefficients appq
Œ

point counts on modular curves modulo p
Œ

character sums
Œ

Gaussian hypergeometric series
Œ

harmonic sums
Œ

truncated hypergeometric series
Œ
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Kilbourn’s extension of the Ahlgren–Ono supercongruence

4F3

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” appq pmod p3q,

for primes p ą 2. Again, apnq are the Fourier coefficients of

ηp2τq4ηp4τq4 “
8
ÿ

n“1

apnqqn.

THM
Kilbourn

2006

• This result proved the first of 14 related supercongruences
conjectured by Rodriguez-Villegas (2001) between

• truncated hypergeometric series 4F3 and
• Fourier coefficients of modular forms of weight 4.

• Despite considerable progress, 11 of these remain open.
McCarthy (2010), Fuselier-McCarthy (2016) prove one each; McCarthy (2010) proves “half” of all 14.

• The 14 supercongruence conjectures were complemented with 4` 4
conjectures for 2F1 and 3F2.
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A supercongruence for 6F5

6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” bppq pmod p3q,

for primes p ą 2. Here, bpnq are the Fourier coefficients of

ηpτq8ηp4τq4`8ηp4τq12 “ ηp2τq12`32ηp2τq4ηp8τq8 “
8
ÿ

n“1

bpnqqn,

the unique newform in S6pΓ0p8qq.

THM
OSZ
2017

• Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p5.

• A result of Frechette, Ono and Papanikolas expresses the bppq in terms of
Gaussian hypergeometric functions.

• Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p3 in terms of sums involving harmonic sums.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
24 / 33



A supercongruence for 6F5

6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” bppq pmod p3q,

for primes p ą 2. Here, bpnq are the Fourier coefficients of

ηpτq8ηp4τq4`8ηp4τq12 “ ηp2τq12`32ηp2τq4ηp8τq8 “
8
ÿ

n“1

bpnqqn,

the unique newform in S6pΓ0p8qq.

THM
OSZ
2017

• Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p5.

• A result of Frechette, Ono and Papanikolas expresses the bppq in terms of
Gaussian hypergeometric functions.

• Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p3 in terms of sums involving harmonic sums.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
24 / 33



A supercongruence for 6F5

6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” bppq pmod p3q,

for primes p ą 2. Here, bpnq are the Fourier coefficients of

ηpτq8ηp4τq4`8ηp4τq12 “ ηp2τq12`32ηp2τq4ηp8τq8 “
8
ÿ

n“1

bpnqqn,

the unique newform in S6pΓ0p8qq.

THM
OSZ
2017

• Conjectured by Mortenson based on numerical evidence, which further
suggests it holds modulo p5.

• A result of Frechette, Ono and Papanikolas expresses the bppq in terms of
Gaussian hypergeometric functions.

• Osburn and Schneider determined the resulting Gaussian hypergeometric
functions modulo p3 in terms of sums involving harmonic sums.

A gumbo with hints of partitions, modular forms, special integer sequences and supercongruences Armin Straub
24 / 33



A brief impression of the available ingredients

In terms of Gaussian hypergeometric series,

bppq “ ´p56F5p1q ` p
4
4F3p1q ` p

3
2F1p1q ` p

2.

THM

• Conjectured by Koike; proven by Frechette, Ono and Papanikolas (2004).
• Here, φp is the quadratic character mod p, εp the trivial character, and

n`1Fnpxq “ n`1Fn

ˆ

φp, φp, . . . , φp
εp, . . . , εp

ˇ

ˇ

ˇ

ˇ

x

˙

p

,

the finite field version of

n`1Fn

ˆ

1
2 ,

1
2 , . . . ,

1
2

1, . . . , 1

ˇ

ˇ

ˇ

ˇ

x

˙

.

• Since pnn`1Fnpxq P Z, it follows easily that

bppq ” ´p56F5p1q ” 6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

pmod pq.
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A brief impression of the available ingredients, cont’d

For primes p ą 2 and ` ě 2,

´p2`´12`F2`´1p1q ” p2X`ppq ` pY`ppq ` Z`ppq pmod p3q.

THM
Osburn

Schneider
2009

• With m “ pp´ 1q{2, the right-hand sides are

Z`ppq “ 2`F2`´1

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

m

,

Y`ppq “
m
ÿ

k“0

p´1q`k
ˆ

m` k

k

˙`ˆ
m

k

˙`
`

1´ `kp2Hk ´Hm`k ´Hm´kq,

X`ppq “
m
ÿ

k“0

p´1q`k
ˆ

m` k

k

˙`ˆ
m

k

˙`
`

1` 4`kpHm`k ´Hkq

` 2`2k2pHm`k ´Hkq
2 ´ `k2pH

p2q
m`k ´H

p2q
k q

˘

.
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A harmonic identity

n
ÿ

k“0

ˆ

n` k

k

˙2ˆn

k

˙2
`

1´ 2kp2Hk ´Hn`k ´Hn´kq
˘

“ 1
THM

• As Nesterenko (1996), consider the partial fraction decomposition

Rptq “

śn
j“1pt´ jq

2

śn
j“0pt` jq

2
“

n
ÿ

k“0

ˆ

Ak

pt` kq2
`

Bk

t` k

˙

.

• One finds
Ak “

ˆ

n` k

k

˙2ˆ
n

k

˙2

,

Bk “ 2Ak

`

2Hk ´Hn`k ´Hn´k

˘

.

• The residue sum theorem applied to tRptq implies:

n
ÿ

k“0

pAk ´ kBkq “
ÿ

finite poles x

Resx tRptq “ ´Res8 tRptq “ 1

• Only needed modulo p2 and n “ pp´ 1q{2 for Kilbourn’s congruence.
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A harmonic congruence

• Using identities similarly obtained from partial fractions, the 6F5

congruence can be reduced to:

n
ÿ

k“0

p´1qk
ˆ

n` k

k

˙3ˆn

k

˙3
`

1´ 3kp2Hk ´Hn`k ´Hn´kq
˘

”

n
ÿ

k“0

ˆ

n` k

k

˙2ˆn

k

˙2

pmod p2q

for primes p ą 2 and n “ pp´ 1q{2.

LEM
OSZ
2017

• While identities can (now) be verified algorithmically, no algorithms
are available for proving such congruences.
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Paule–Schneider harmonic sums

C`pnq “
n
ÿ

k“0

ˆ

n

k

˙`
`

1´ `kpHk ´Hn´kq
˘

DEF
Paule,

Schneider
2003

• These are integer sequences: C1pnq “ 1, C2pnq “ 0, C3pnq “ p´1qn,

C4pnq “ p´1qn
ˆ

2n

n

˙

, C5pnq “ p´1qn
n
ÿ

k“0

ˆ

n

k

˙2ˆn` k

k

˙

C6pnq “ p´1qn
n
ÿ

k“0

ˆ

n

k

˙2ˆn` k

k

˙ˆ

2k

n

˙LEM
OSZ ’17;
Chu, De

Donno
’05

• Open question: are there single-sum hypergeometric expressions for
C`pnq when ` ě 7?
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Another Apéry supercongruence

For all odd primes p,

A

ˆ

p´ 1

2

˙

” C6

ˆ

p´ 1

2

˙

pmod p2q.

LEM
OSZ ’17

• Modular parametrizations by weight 2 modular forms of level 6 and 7.

• In other words,

n
ÿ

k“0

ˆ

n

k

˙2ˆ
n` k

k

˙2

” p´1qn
n
ÿ

k“0

ˆ

n

k

˙2ˆ
n` k

k

˙ˆ

2k

n

˙

pmod p2q.

• Proving this congruence is easy once we replace the right-hand side with

C6pnq “
n
ÿ

k“0

p´1qk
ˆ

3n` 1

n´ k

˙ˆ

n` k

k

˙3

.

• Again, let us lament the lack of an algorithmic approach to such
congruences.
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An irrational equality

Apnq “
p´1qn

2

n
ÿ

k“0

ˆ

n` k

n

˙ˆ

2n´ k

n

˙ˆ

n

k

˙4

ˆ
`

2` pn´ 2kqp5Hk ´ 5Hn´k ´Hn`k `H2n´kq
˘

LEM

• This arises from a construction of linear forms in ζp3q due to Ball. If

pRptq “
n!2 p2t` nq

śn
j“1pt´ jq ¨

śn
j“1pt` n` jq

śn
j“0pt` jq

4

“

n
ÿ

k“0

ˆ

pAk

pt` kq4
`

pBk

pt` kq3
`

pCk

pt` kq2
`

pDk

t` k

˙

,

then
8
ÿ

t“1

pRptq “ unζp3q ` vn.

• Remarkably, the linear forms agree with the ones obtained from
Nesterenko’s construction:

Apnq “
1

2
un “

1

2

n
ÿ

k“0

pBk
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Outlook

• Can we extend the congruence

6F5

ˆ 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

1, 1, 1, 1, 1

ˇ

ˇ

ˇ

ˇ

1

˙

p´1

” bppq pmod p3q,

and show that it holds modulo p5?

Special relevance of p3: by Weil’s bounds, |bppq| ă 2p5{2

• Can the algorithmic approaches for A “ B be adjusted to A ” B?

• Why do these supercongruences hold?

Very promising explanation suggested by Roberts, Rodriguez-Villegas,

Watkins (2017) in terms of gaps between Hodge numbers of an associated

motive.
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THANK YOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks
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