On a q-analog of the Apéry numbers

International conference on orthogonal polynomials and q-series University of Central Florida

celebrating Mourad E.H. Ismail

Armin Straub

May 12, 2015

University of Illinois at Urbana-Champaign

$$A(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{n+k}{k}^2$$

1, 5, 73, 1445, 33001, 819005, 21460825, . . .

Positivity of rational functions

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

 Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions.

Positivity of rational functions

Kauers-Zeilberger 2008

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

 Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions.

S-Zudilin 2015

PROP The diagonal coefficients of the Kauers–Zeilberger function are

$$D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n}^2.$$

• D(n) is an example of an **Apéry-like sequence**.

Positivity of rational functions

Kauers-Zeilberger 2008

CONJ All Taylor coefficients of the following function are positive:

$$\frac{1}{1-(x+y+z+w)+2(yzw+xzw+xyw+xyz)+4xyzw}.$$

 Among those present, Askey, Ismail, Koornwinder have contributed to understanding the positivity of (some) rational functions.

S-Zudilin 2015

PROP The diagonal coefficients of the Kauers–Zeilberger function are

$$D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{n}^2.$$

• D(n) is an example of an **Apéry-like sequence**.

Can we conclude the conjectured positivity from the positivity of D(n) together with the (obvious) positivity of $\frac{1}{1-(x+y+z)+2xuz}$?

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers $A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$

$$1, 5, 73, 1445, \dots$$

satisfy

$$(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$$

Apéry numbers and the irrationality of $\zeta(3)$

• The Apéry numbers

 $1, 5, 73, 1445, \dots$

$$A(n) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2$$
 satisfy

 $(n+1)^3 A(n+1) = (2n+1)(17n^2 + 17n + 5)A(n) - n^3 A(n-1).$

THM Apéry '78 $\zeta(3) = \sum_{n=1}^{\infty} \frac{1}{n^3}$ is irrational.

proof The same recurrence is satisfied by the "near"-integers

$$B(n) = \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2 \left(\sum_{j=1}^{n} \frac{1}{j^3} + \sum_{m=1}^{k} \frac{(-1)^{m-1}}{2m^3 {n \choose m} {n+m \choose m}} \right).$$

Then, $\frac{B(n)}{A(n)} \to \zeta(3)$. But too fast for $\zeta(3)$ to be rational.

Zagier's search and Apéry-like numbers

• Recurrence for Apéry numbers is the case (a,b,c)=(17,5,1) of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier

Are there other tuples (a,b,c) for which the solution defined by $u_{-1}=0,\ u_0=1$ is integral?

Zagier's search and Apéry-like numbers

- Recurrence for Apéry numbers is the case $\left(a,b,c\right)=\left(17,5,1\right)$ of

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - cn^3 u_{n-1}.$$

Q Beukers, Zagier

Are there other tuples (a, b, c) for which the solution defined by $u_{-1} = 0$, $u_0 = 1$ is integral?

 \bullet Essentially, only 14 tuples (a,b,c) found.

(Almkvist-Zudilin)

• 4 hypergeometric and 4 Legendrian solutions (with generating functions

$$_{3}F_{2}\left(\frac{1}{2},\alpha,1-\alpha \left| 4C_{\alpha}z\right.\right), \qquad \frac{1}{1-C_{\alpha}z}{}_{2}F_{1}\left(\frac{\alpha,1-\alpha \left| \frac{-C_{\alpha}z}{1-C_{\alpha}z}\right.\right)^{2},$$

with $\alpha = \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{6}$ and $C_{\alpha} = 2^4, 3^3, 2^6, 2^4 \cdot 3^3$)

- 6 sporadic solutions
- Similar (and intertwined) story for:

• $(n+1)^2 u_{n+1} = (an^2 + an + b)u_n - cn^2 u_{n-1}$ (Beukers, Zagier)

• $(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$ (Cooper)

The six sporadic Apéry-like numbers

(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} \binom{n}{k}^2 \binom{n+k}{n}^2$	Apéry numbers
(12, 4, 16)	$\sum_{k} \binom{n}{k}^2 \binom{2k}{n}^2$	
(10, 4, 64)	$\sum_{k} \binom{n}{k}^{2} \binom{2k}{k} \binom{2(n-k)}{n-k}$	Domb numbers
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	Almkvist-Zudilin numbers
(11, 5, 125)	$\sum_{k} (-1)^{k} {n \choose k}^{3} \left({4n - 5k - 1 \choose 3n} + {4n \choose k}^{3} \right)$	$\begin{pmatrix} -5k \\ 3n \end{pmatrix}$
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \quad .$$

 $1, 5, 73, 1145, \ldots$

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

$$\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)} = \sum_{n\geqslant 0} A(n) \left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n \quad .$$
 modular form

$$1 + 5q + 13q^2 + 23q^3 + O(q^4) q - 12q^2 + 66q^3 + O(q^4)$$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

 $1, 5, 73, 1145, \ldots$

Apéry-like numbers and modular forms

• The Apéry numbers A(n) satisfy

$$1, 5, 73, 1145, \dots$$
 n

$$\underbrace{\frac{\eta^7(2\tau)\eta^7(3\tau)}{\eta^5(\tau)\eta^5(6\tau)}}_{\text{modular form}} = \sum_{n\geqslant 0} A(n) \underbrace{\left(\frac{\eta^{12}(\tau)\eta^{12}(6\tau)}{\eta^{12}(2\tau)\eta^{12}(3\tau)}\right)^n}_{\text{modular function}} \quad .$$

FACT Not at all evidently, such a modular parametrization exists for all known Apéry-like numbers!

• As a consequence, with $z = \sqrt{1 - 34x + x^2}$,

$$\sum_{n\geqslant 0} A(n)x^n = \frac{17 - x - z}{4\sqrt{2}(1 + x + z)^{3/2}} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ 1, 1 \end{array} \middle| -\frac{1024x}{(1 - x + z)^4}\right).$$

Context:

f(au) modular form of (integral) weight k

 $x(\tau)$ modular function

$$y(x) \quad \text{such that } y(x(\tau)) = f(\tau)$$

Then y(x) satisfies a linear differential equation of order k+1.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \geqslant 5$, $A(p) \equiv 5 \pmod{p^3}.$

- Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$, $A(p) \equiv 5 \pmod{p^3}$.
- Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

Beukers. Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$(p \geqslant 5)$$

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

• Chowla, Cowles, Cowles (1980) conjectured that, for primes $p \ge 5$,

$$A(p) \equiv 5 \pmod{p^3}.$$

• Gessel (1982) proved that $A(mp) \equiv A(m) \pmod{p^3}$.

Beukers. Coster '85, '88

THM The Apéry numbers satisfy the supercongruence

$$A(mp^r) \equiv A(mp^{r-1}) \pmod{p^{3r}}.$$

For primes p, simple combinatorics proves the congruence EG

$$\binom{2p}{p} = \sum_{k} \binom{p}{k} \binom{p}{p-k} \equiv 1+1 \pmod{p^2}.$$

For $p \ge 5$, Wolstenholme's congruence shows that, in fact,

$$\binom{2p}{p} \equiv 2 \pmod{p^3}.$$

 $(p \geqslant 5)$

Conjecturally, supercongruences like

$$A(mp^r) \equiv A(mp^{r-1}) ~(\text{mod } p^{3r})$$

Robert Osburn (University of Dublin)

(NISER, India)
Osburn-Sahu '09

hold for all Apéry-like numbers.

• Current state of affairs for the six sporadic sequences from earlier:

	·	
(a,b,c)	A(n)	
(17, 5, 1)	$\sum_{k} {n \choose k}^2 {n+k \choose n}^2$	Beukers, Coster '87-'88
	$\sum_{k} {n \choose k}^2 {2k \choose n}^2$	Osburn–Sahu–S '14
(10, 4, 64)	$\sum_{k} {n \choose k}^2 {2k \choose k} {2(n-k) \choose n-k}$	Osburn–Sahu '11
(7, 3, 81)	$\sum_{k} (-1)^{k} 3^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^{3}}$	open!! modulo p^2 Amdeberhan '14
	$\sum_{k} (-1)^{k} \binom{n}{k}^{3} \left(\binom{4n-5k-1}{3n} + \binom{4n-5k}{3n} \right)$	Osburn–Sahu–S '14
(9, 3, -27)	$\sum_{k,l} \binom{n}{k}^2 \binom{n}{l} \binom{k}{l} \binom{k+l}{n}$	open

Non-super congruences are abundant

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (C)

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = \#\{x \in X : T^n x = x\}$$
 "points of period n"

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

Non-super congruences are abundant

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (C)

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n)=\#\{x\in X: T^nx=x\} \qquad \text{ "points of period n"}$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

•
$$a(n) = \operatorname{tr} A^n$$
 with $A \in \mathbb{Z}^{d \times d}$

Arnold '03, Zarelua '04, ...

Non-super congruences are abundant

$$a(mp^r) \equiv a(mp^{r-1}) \pmod{p^r}$$
 (C)

• realizable sequences a(n), i.e., for some map $T: X \to X$,

$$a(n) = \#\{x \in X: T^n x = x\} \qquad \text{``points of period } n\text{''}$$

Everest-van der Poorten-Puri-Ward '02, Arias de Reyna '05

• $a(n) = \operatorname{tr} A^n$ with $A \in \mathbb{Z}^{d \times d}$

Arnold '03, Zarelua '04, ...

• If a(1)=1, then (C) is equivalent to $\exp\left(\sum_{n=1}^\infty \frac{a(n)}{n}T^n\right)\in\mathbb{Z}[[T]].$ This is a natural condition in formal group theory.

Cooper's sporadic sequences

Cooper's search for integral solutions to

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$$

revealed three additional sporadic solutions:

\$10 and supercongruence known

$$s_{7}(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k} \binom{2k}{n} \qquad s_{10}(n) = \sum_{k=0}^{n} \binom{n}{k}^{4}$$

$$s_{18}(n) = \sum_{k=0}^{[n/3]} (-1)^{k} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k} \left[\binom{2n-3k-1}{n} + \binom{2n-3k}{n} \right]$$

Cooper's sporadic sequences

Cooper's search for integral solutions to

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$$

revealed three additional sporadic solutions:

$$s_{10}\ \mathrm{and}\ \mathrm{supercongruence}\ \mathrm{known}$$

$$s_{7}(n) = \sum_{k=0}^{n} {n \choose k}^{2} {n+k \choose k} {2k \choose n} \qquad s_{10}(n) = \sum_{k=0}^{n} {n \choose k}^{4}$$

$$s_{18}(n) = \sum_{k=0}^{[n/3]} (-1)^{k} {n \choose k} {2k \choose k} {2(n-k) \choose n-k} \left[{2n-3k-1 \choose n} + {2n-3k \choose n} \right]$$

$$s_7(mp) \equiv s_7(m) \pmod{p^3}$$
 $s_{18}(mp) \equiv s_{18}(m) \pmod{p^2}$

Cooper's sporadic sequences

Cooper's search for integral solutions to

$$(n+1)^3 u_{n+1} = (2n+1)(an^2 + an + b)u_n - n(cn^2 + d)u_{n-1}$$

revealed three additional sporadic solutions:

 s_{10} and supercongruence known

$$s_{7}(n) = \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k} \binom{2k}{n} \qquad s_{10}(n) = \sum_{k=0}^{n} \binom{n}{k}^{4}$$

$$s_{18}(n) = \sum_{k=0}^{[n/3]} (-1)^{k} \binom{n}{k} \binom{2k}{k} \binom{2(n-k)}{n-k} \left[\binom{2n-3k-1}{n} + \binom{2n-3k}{n} \right]$$

$$s_7(mp) \equiv s_7(m) \pmod{p^3}$$
 $s_{18}(mp) \equiv s_{18}(m) \pmod{p^2}$

$$s_7(mp^r) \equiv s_7(mp^{r-1}) \pmod{p^{3r}}$$
 $s_{18}(mp^r) \equiv s_{18}(mp^{r-1}) \pmod{p^{2r}}$

Basic *q*-analogs

• The natural number n has the q-analog:

$$[n]_q = \frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1}$$

In the limit $q \rightarrow 1$ a q-analog reduces to the classical object.

Basic q-analogs

• The natural number n has the q-analog:

$$[n]_q = \frac{q^n - 1}{q - 1} = 1 + q + \dots + q^{n-1}$$

In the limit $q \rightarrow 1$ a q-analog reduces to the classical object.

• The *q*-factorial:

$$[n]_q! = [n]_q [n-1]_q \cdots [1]_q$$

The q-binomial coefficient:

$$\binom{n}{k}_q = \frac{[n]_q!}{[k]_q! [n-k]_q!} = \binom{n}{n-k}_q$$

A q-binomial coefficient

EG

$$\binom{6}{2} = \frac{6 \cdot 5}{2} = 3 \cdot 5$$

$$\binom{6}{2}_q = \frac{(1+q+q^2+q^3+q^5)(1+q+q^2+q^3+q^4)}{1+q}$$

A q-binomial coefficient

EG

$$\binom{6}{2} = \frac{6 \cdot 5}{2} = 3 \cdot 5$$

A q-binomial coefficient

EG

$$\binom{6}{2} = \frac{6 \cdot 5}{2} = 3 \cdot 5$$

$$\binom{6}{2}_q = \frac{(1+q+q^2+q^3+q^5)(1+q+q^2+q^3+q^4)}{1+q}$$

$$= \underbrace{(1-q+q^2)}_{=\Phi_6(q)} \underbrace{(1+q+q^2)}_{=[3]_q} \underbrace{(1+q+q^2+q^3+q^4)}_{=[5]_q}$$

• The cyclotomic polynomial $\Phi_6(q)$ becomes 1 for q=1and hence invisible in the classical world

The coefficients of *q*-binomial coefficients

Here's some q-binomials in expanded form:

$$\begin{pmatrix} 6 \\ 2 \end{pmatrix}_q = q^8 + q^7 + 2q^6 + 2q^5 + 3q^4 + 2q^3 + 2q^2 + q + 1$$

$$\begin{pmatrix} 9 \\ 3 \end{pmatrix}_q = q^{18} + q^{17} + 2q^{16} + 3q^{15} + 4q^{14} + 5q^{13} + 7q^{12}$$

$$+ 7q^{11} + 8q^{10} + 8q^9 + 8q^8 + 7q^7 + 7q^6 + 5q^5$$

$$+ 4q^4 + 3q^3 + 2q^2 + q + 1$$

- The degree of the q-binomial is k(n-k).
- All coefficients are positive!
- In fact, the coefficients are unimodal.

Sylvester, 1878

A few faces of the q-binomial coefficient

The q-binomial coefficient $\binom{n}{k}_q$

- satisfies a q-version of Pascal's rule, $\binom{n}{j}_q = \binom{n-1}{j-1}_q + q^j \binom{n-1}{j}_q$,
- counts k-subsets of an n-set weighted by their sum,
- · features in a binomial theorem for noncommuting variables,

$$(x+y)^n = \sum_{j=0}^n \binom{n}{j}_q x^j y^{n-j}, \quad \text{if } yx = qxy,$$

- has a q-integral representation analogous to the beta function,
- counts the number of k-dimensional subspaces of \mathbb{F}_q^n .

Combinatorially, we again obtain:

$$\binom{2p}{p}_q = \sum_k \binom{p}{k}_q \binom{p}{p-k}_q q^{(p-k)^2}$$

"q-Chu-Vandermonde"

Combinatorially, we again obtain:

$$"q ext{-}Chu ext{-}Vandermonde"$$

$${2p \choose p}_q = \sum_k {p \choose k}_q {p \choose p-k}_q q^{(p-k)^2}$$
$$\equiv q^{p^2} + 1 = [2]_{q^{p^2}}$$

$$\pmod{[p]_q^2}$$

(Note that
$$\left[p\right]_q$$
 divides $\binom{p}{k}_q$ unless $k=0$ or $k=p$.)

Combinatorially, we again obtain:

"q-Chu-Vandermonde"

(Note that $[p]_q$ divides $\binom{p}{k}_q$ unless k=0 or k=p.)

This combinatorial argument extends to show:

$$\begin{array}{l} \textbf{THM} \\ \text{\tiny Clark} \\ \text{\tiny 1995} \end{array} \begin{pmatrix} ap \\ bp \end{pmatrix}_q \equiv \begin{pmatrix} a \\ b \end{pmatrix}_{q^{p^2}} \pmod{[p]_q^2}$$

Combinatorially, we again obtain:

 $\it ``q\text{-}\mathsf{Chu}\text{-}\mathsf{Vandermonde''}$

(Note that $\left[p\right]_q$ divides $\binom{p}{k}_q$ unless k=0 or k=p.)

• This combinatorial argument extends to show:

$$\begin{array}{c} \textbf{THM} \\ \text{\tiny Clark} \\ \text{\tiny 1995} \end{array} \begin{pmatrix} ap \\ bp \end{pmatrix}_q \equiv \begin{pmatrix} a \\ b \end{pmatrix}_{q^{p^2}} \pmod{[p]_q^2}$$

• Similar results by Andrews; e.g.:

$$\begin{pmatrix} ap \\ bp \end{pmatrix}_{a} \equiv q^{(a-b)b\binom{p}{2}} \binom{a}{b}_{a^{p}} \pmod{[p]_{q}^{2}}$$

A q-analog of Ljunggren's congruence

• The following answers the question of Andrews to find a q-analog of Wolstenholme's congruence.

S 2011

THM For any prime p,

$$\binom{ap}{bp}_q \equiv \binom{a}{b}_{q^{p^2}} - (a-b)b\binom{a}{b}\frac{p^2-1}{24}(q^p-1)^2 \quad \pmod{[p]_q^3}.$$

A *q*-analog of Ljunggren's congruence

 The following answers the question of Andrews to find a q-analog of Wolstenholme's congruence.

S 2011

THM For any prime p,

$$\binom{ap}{bp}_q \equiv \binom{a}{b}_{q^{p^2}} - (a-b)b\binom{a}{b}\frac{p^2-1}{24}(q^p-1)^2 \quad \pmod{[p]_q^3}.$$

EG Choosing p=13, a=2, and b=1, we have

$${26 \choose 13}_q = 1 + q^{169} - 14(q^{13} - 1)^2 + (1 + q + \dots + q^{12})^3 f(q)$$

where $f(q) = 14 - 41q + 41q^2 - ... + q^{132}$ is an irreducible polynomial with integer coefficients.

A q-analog of Ljunggren's congruence

• The following answers the question of Andrews to find a q-analog of Wolstenholme's congruence.

THM For any prime p, S 2011

$$\binom{ap}{bp}_q \equiv \binom{a}{b}_{q^{p^2}} - (a-b)b\binom{a}{b} \frac{p^2 - 1}{24} (q^p - 1)^2 \pmod{[p]_q^3}.$$

• Note that $\frac{p^2-1}{24}$ is an integer if (p,6)=1. (The polynomial congruence holds for p=2,3 but coefficients are rational.)

A q-analog of Ljunggren's congruence

• The following answers the question of Andrews to find a q-analog of Wolstenholme's congruence.

THM For any prime p, S 2011

$$\binom{ap}{bp}_q \equiv \binom{a}{b}_{q^{p^2}} - (a-b)b\binom{a}{b}\frac{p^2-1}{24}(q^p-1)^2 \pmod{[p]_q^3}.$$

- Note that $\frac{p^2-1}{24}$ is an integer if (p,6)=1. (The polynomial congruence holds for p=2,3 but coefficients are rational.)
- Ljunggren's classical congruence holds modulo p^{3+r} with r the p-adic valuation of $ab(a-b)\binom{a}{b}$. Jacobsthal '52 Is there a nice explanation or analog in the q-world?

A q-analog of Ljunggren's congruence

 The following answers the question of Andrews to find a q-analog of Wolstenholme's congruence.

THM For any prime p,

$$\binom{ap}{bp}_q \equiv \binom{a}{b}_{q^{p^2}} - (a-b)b\binom{a}{b}\frac{p^2-1}{24}(q^p-1)^2 \quad \pmod{[p]_q^3}.$$

- Note that $\frac{p^2-1}{24}$ is an integer if (p,6)=1. (The polynomial congruence holds for p=2,3 but coefficients are rational.)
- Ljunggren's classical congruence holds modulo p^{3+r} with r the p-adic valuation of $ab(a-b)\binom{a}{b}$.

 Jacobsthal '52 ls there a nice explanation or analog in the q-world?
- The congruence holds mod $\Phi_n(q)^3$ if p is replaced by any integer n. (No classical counterpart since $\Phi_n(1)=1$ unless n is a prime power.)

A *q*-version of the Apéry numbers

• A symmetric q-analog of the Apéry numbers:

$$A_q(n) = \sum_{k=0}^{n} q^{(n-k)^2} \binom{n}{k}_q^2 \binom{n+k}{k}_q^2$$

Appear implicitly in work of Krattenthaler–Rivoal–Zudilin '06

A q-version of the Apéry numbers

A symmetric q-analog of the Apéry numbers:

$$A_q(n) = \sum_{k=0}^{n} q^{(n-k)^2} \binom{n}{k}_q^2 \binom{n+k}{k}_q^2$$

- Appear implicitly in work of Krattenthaler–Rivoal–Zudilin '06
- The first few values are:

$$A(0) = 1$$

$$A(0) = 1$$

$$A(1) = 5$$

$$A_{q}(1) = 1 + 3q + q^{2}$$

$$A(2) = 73$$

$$A_{q}(2) = 1 + 3q + 9q^{2} + 14q^{3} + 19q^{4} + 14q^{5}$$

$$+ 9q^{6} + 3q^{7} + q^{8}$$

$$A(3) = 1445$$

$$A_{q}(3) = 1 + 3q + 9q^{2} + 22q^{3} + 43q^{4} + 76q^{5}$$

$$+ 117q^{6} + \dots + 3q^{17} + q^{18}$$

q-supercongruences for the Apéry numbers

THM The q-Apéry numbers, defined as

in progress

$$A_q(n) = \sum_{k=0}^{n} q^{(n-k)^2} \binom{n}{k}_q^2 \binom{n+k}{k}_q^2,$$

satisfy the supercongruences

$$A_q(pn) \equiv A_{q^{p^2}}(n) - \frac{p^2 - 1}{12}(q^p - 1)^2 f(n) \pmod{[p]_q^3}.$$

q-supercongruences for the Apéry numbers

THM The q-Apéry numbers, defined as

in progress

$$A_q(n) = \sum_{k=0}^{n} q^{(n-k)^2} \binom{n}{k}_q^2 \binom{n+k}{k}_q^2,$$

satisfy the supercongruences

$$A_q(pn) \equiv A_{q^{p^2}}(n) - \frac{p^2 - 1}{12}(q^p - 1)^2 f(n) \pmod{[p]_q^3}.$$

• The numbers f(n) can be expressed as

$$0, 5, 292, 13005, 528016, \dots$$

$$f(n) = \sum_{k=0}^{n} g(n,k) \binom{n}{k}^{2} \binom{n+k}{k}^{2}, \qquad g(n,k) = k(2n-k) + \frac{k^{4}}{(n+k)^{2}}.$$

• Similar q-analogs and congruences for other Apéry-like numbers?

The Almkvist-Zudilin numbers

Recall that for the Almkvist–Zudilin numbers,

$$Z(n) = \sum_{k=0}^{n} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3},$$

the supercongruences $Z(mp^r) \equiv Z(mp^{r-1})$ modulo p^{3r} are still conjectural (even for r=1).

The Almkvist-Zudilin numbers

Recall that for the Almkvist–Zudilin numbers,

$$Z(n) = \sum_{k=0}^{n} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3},$$

the supercongruences $Z(mp^r) \equiv Z(mp^{r-1})$ modulo p^{3r} are still conjectural (even for r=1).

- It is not clear how to introduce a *q*-analog for which (at least empirically) supercongruences hold.
- Maybe finding such a *q*-analog leads to a better understanding of the classical case, too.

The Almkvist-Zudilin numbers

Recall that for the Almkvist–Zudilin numbers,

$$Z(n) = \sum_{k=0}^{n} (-3)^{n-3k} \binom{n}{3k} \binom{n+k}{n} \frac{(3k)!}{k!^3},$$

the supercongruences $Z(mp^r) \equiv Z(mp^{r-1})$ modulo p^{3r} are still conjectural (even for r=1).

- It is not clear how to introduce a *q*-analog for which (at least empirically) supercongruences hold.
- Maybe finding such a q-analog leads to a better understanding of the classical case, too.

EG The Almkvist–Zudilin numbers are the diagonal coefficients of

$$\frac{1}{1 - (x_1 + x_2 + x_3 + x_4) + 27x_1x_2x_3x_4}$$

Some of many open problems

- Supercongruences for all Apéry-like numbers
 - proof of all the classical ones
 - uniform explanation, proofs not relying on binomial sums
- polynomial analogs of Apéry-like numbers
 - find q-analogs (e.g., for Almkvist–Zudilin sequence)
 - q-supercongruences
 - is there a geometric picture?
- Many further questions remain.
 - is the known list complete?
 - Apéry-like numbers as diagonals and multivariate supercongruences
 - higher-order analogs, Calabi-Yau DEs
 - modular supercongruences

Beukers '87, Ahlgren-Ono '00

$$A\left(\frac{p-1}{2}\right) \equiv a(p) \pmod{p^2}, \qquad \sum_{n=1}^{\infty} a(n)q^n = \eta^4(2\tau)\eta^4(4\tau)$$

•

THANK YOU!

Slides for this talk will be available from my website: http://arminstraub.com/talks

A. Straub

Multivariate Apéry numbers and supercongruences of rational functions Algebra & Number Theory, Vol. 8, Nr. 8, 2014, p. 1985-2008

R. Osburn, B. Sahu, A. Straub Supercongruences for sporadic sequences

to appear in Proceedings of the Edinburgh Mathematical Society, 2014

A. Straub. W. Zudilin

Positivity of rational functions and their diagonals

Journal of Approximation Theory (special issue dedicated to Richard Askey), Vol. 195, 2015, p. 57-69

A. Straub

A q-analog of Ljunggren's binomial congruence DMTCS Proceedings: FPSAC 2011, p. 897-902