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Random walks

e We study random walks in the plane
consisting of n steps. Each step is of
length 1 and is taken in a randomly
chosen direction.
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Random walks

e We study random walks in the plane
consisting of n steps. Each step is of
length 1 and is taken in a randomly
chosen direction.

e We are interested in the distance
traveled in n steps.

Q For instance, how large is this dis-
tance on average?

e Probability density: p,(x)
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Random walks are only about 100 years old

e Karl Pearson asked for
prn(x) in Nature in 1905.

This famous question coined
the term random walk.

The Problem of the Random Walk.

CaN any of your readers refer me to a work wherein
I should find a solution of the following problem, or fail-
ing the knowledge of any existing solution providé me
with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks I yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight-line. He
repeats this process n times. I require the probability that
after these n stretches he is at a distance between # and
748y from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a solution ought to be
found, if only in the form of a series in powers of 1/,
when n is large. KarL Pearson.
The Gables, East llsley, Berks.

Applications include:

e dispersion of mosquitoes

e random migration of
micro-organisms

e phenomenon of laser speckle
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Long random walks

THM 2x 2
Rayleigh, pn(x) = —e™™ /n for large n
1905 n
EG 0.06 -
P200  gesf
0.04 1
0.031
0.021
0.01
1‘0 2‘0 3‘0 40 50

The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905
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Densities of short walks
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Densities of short walks
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Moments

e The moments of a RV X are E(X), E(X?), E(X?), ...
e If X has probability density f(x) then

FACT The moments E(X?®) are analytic in s. (i, eg. f(x) is compactly supported)
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Moments

e The moments of a RV X are E(X), E(X?), E(X?), ...
e If X has probability density f(x) then

FACT The moments E(X?®) are analytic in s. (i, eg. f(x) is compactly supported)

e Represent the kth step by the complex number €27k

e The sth moment of the distance after n steps is:

Wi(s) /
0.1

In particular, W,,(1) is the average distance after n steps.

27Tzkz dx
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Average distance traveled in two steps

e Numerically: W(1) ~ 1.2732395447351626862
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Average distance traveled in two steps

e Numerically: W(1) ~ 1.2732395447351626862
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Average distance traveled in two steps

e Numerically: W(1) ~ 1.2732395447351626862
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The simple two-step case confirmed

e The average distance in two steps:

1 rl
Wz(l):/o /0 |27 4+ 2| dady = 7
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The simple two-step case confirmed

e The average distance in two steps:
1 p1 ' '
Wa(1) = / / |e*™® + 2| dady = ?
o Jo

1
:/0 |1+ ™| dy
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The simple two-step

case confirmed

e The average distance in two steps:

1 rl
Wz(l):/o /0 |27 4+ ™| dady = 7

’1+62wiy‘
= |1 + (cos Ty + z’sinwy)2|
= 2 cos(my)

1
:/0 |1+ ™| dy

1
:/ 2 cos(my)dy
0
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The simple two-step case confirmed

e The average distance in two steps:

1 rl
Wz(l):/o /0 |27 4+ ™| dady = 7

’1 4 eszy‘

=1+ (coswy+isin7ry)2|

= 2 cos(my)

1
:/0 1 —i—eQ’”y‘ dy
1

2 cos(my)dy

~ 1.27324

I
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The simple two-step case confirmed

e The average distance in two steps:

, 1
1+ 2] :/ 1+ e2) dy
:|1+(cos7ry+isin7ry)2| 01
= 2cos(my) = / 2 cos(my)dy
0
4
=—~1.27324
7r

1 rl
Wz(l):/o /0 |27 4+ 2| dady = 7

e Mathematica 7 and Maple 14 think the double integral is 0.

Better: Mathematica 8 and 9 just don't evaluate the double integral.
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The simple two-step case confirmed

e The average distance in two steps:

1 rl
Wz(l):/o /0 |27 4+ 2| dady = 7

, 1
1+ 2] :/ 1+ e2) dy
:|1+(cos7ry+isin7ry)2| 01
= 2cos(my) = / 2 cos(my)dy

0
4
=—~1.27324
7r

e Mathematica 7 and Maple 14 think the double integral is 0.

Better: Mathematica 8 and 9 just don't evaluate the double integral.
e This is the average length of a random arc on a
unit circle.
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wy (s) := / 2°pp(z) da = / ‘e%ml + .. 4 e dge
0 [0,1]™

Armin Straub
10
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / °pp(x) da = / ‘eQmm + ... 2 g
0 [0,1]"

e On a desktop:

1.57459723755189365749
1.79909248

Ws(1) ~ 2.00816

SIS
2E
2
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / °pp(x) da = / ‘eQmm + ... 2 g
0 [0,1]"

e On a desktop:
W5(1) =~ 1.57459723755189365749

Wi(l) ~ 1.79909248
W5(1) ~ 2.00816

o On a Supercomputer: Lawrence Berkeley National Laboratory, 256 cores
W5(1) ~ 2.0081618
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / °pp(x) da = / ‘627Ti$1 + ... 2 g
0 [0,1]"

e On a desktop:

1.57459723755189365749
1.79909248

Ws(1) ~ 2.00816

SIS
2E
2

o On a su percomputer: Lawrence Berkeley National Laboratory, 256 cores
Ws(1) ~ 2.0081618
e Hard to evaluate numerically to high precision.

Monte-Carlo integration gives approximations with an asymptotic error of
O(1/v N) where N is the number of sample points.
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ... 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2.194 | 6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

S Ol W N3
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ... 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

n

21 A1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
3 1/1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
41/ 1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
5| 2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.

6 | 2.194 | 6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

Tools for special functions and special numbers Armin Straub



Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ... 2 g
0 [0,1]"

n| s=1 s=2 s=3 s=4 §=205 s=06 s=17

2 1.273 | 2.000 | 3.395 | 6.000 10.87 | 20.00 37.25

3 1.575 | 3.000 | 6.452 | 15.00 36.71 93.00 | 241.5

4 1.799\| 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3

5 2.008 \ 5.000 | 14.29 | 45.00 152.3 | 545.0 | 2037.

6 2.194 | \6.000 | 18.91 66.00 | 248.8 | 996.0 | 4186.
Wa(1) = % W5(1) = 1.57459723755189... =7
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Moments of random walks

DEF The sth moment W,,(s) of the density py:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ... 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 |\ 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2.194 | \6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

S Ol W N3
—
\]
©
Ne)

Wa(1) = 4 W3(1) = 1.57459723755189 ... = ?

For instance, the sequence W3(2k) is 1, 3,15, 93,639, 4653, ...

Tools for special functions and special numbers Armin Straub



The integer sequence database

This site is supported by donations to The OEIS Foundation.

[Infog:,n_f chlvonoag ! ‘

1,3,15,93 search Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,3,15,93

Displaying 1-8 of 8 results found. page 1
Sort: relevance | references | number | modified | created Format: long | short | data
A002893 Sum_{k=0..n} binomial(n,k)~2 * binomial(2k k). 420

(Formerly M2S98 N 1214)
1, 3. 15, 93, 639, 4653, 35169, 272835, 2157759, 17319837, 140668065, 1153462995, 9533639025,
79326566595, 663835030335, 5582724468003, 47152425626559, 399769750195965, 3400775573443089,

28016970072920387, 248256043372999089 (list; graph: refs: en: history: text: internal format)
OFFSET 0.2
COMMENTS Comment from Matthijs Coster, Apr 28 2004: This is the Taylor expansion of a special

point on a curve described by Beauville.

aln) is the (2n)th moment of the distance from the origin of a 3-step random walk in
the plane - Peter M. W. Gill (peter.gill(AT)nott.ac.uk), Feb 27 2004

aln) is the number of Abelian squares of length 2n over a 3-letter alphabet. [From
Jeffrey shallit . Aug 17 2010]

Consider 20 simple random walk on honeycomb lattice. a(n) gives number of paths of
length 2n ending at origin - Sergey Perepechko Feb 16 2011

Row sums of the square of ADGB45Q. - Peter Bala, Mar 05 2013

Conjecture: For each n=1,2,3,... the polynomial g _n(x) = sum_{k=0}"n
binomial(n,k)*2*binomial(2k k) *¥x*k is irreducible over the field of rational
numbers. [Zhi-Wei Sun, Mar 21 2013]

REFERENCES David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic

integral evaluations of Bessel moments, arXiv:0801.0891.

P. Barrucand, A combinatorial identity, Problem 75-4, SIAM Rev., 17 (1975), 168.

Tools for special functions and special numbers Armin Straub 11/ 26




The integer sequence database

This site is supported by donations to The OEIS Foundation.

1,545,545 Search | Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:1,5,45,545

Displaying 1-1 of 1 result found. page 1
Sort: relevance | references | number | modified | created  Format: long | short | data
Al169714 The function W_5(2n) {see Borwein et al. reference for definition). *2:

1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, 15855173825, 322466645545, 6687205253325,
140927922498025, 3010302779775725, 65046639827565525, 1419565970145097545, 31249959013055650125,
693192670456484513025 (list; graph; refs; listen: history; text; internal format)

OFFSET 0.2
COMMENTS Row sums of the fourth power of A008459. - Peter Bala, Mar 05 2013
REFERENCES Armin Straub, Arithmetic aspects of random walks and metheds in definite integration,

Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2e12. -
From M. J. A. Sloane, Dec 16 2012

LINES Table of n, a(n) for n=0..17.
Jonathan M. Borwein, Dirk Muyens, Armin Straub and James Wan, Random Walk Integrals,
2010.

Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine
inteqrals (2012)

FORMULA Sum_{n==0} a(n)*x"n/n!"2 = (Sum_{n==0} x"n/n!"2)"S = BesselI(0, 2¥sqrt(x))"S. - Peter
Bala, Mar 05 2013
MAPLE 4169714 := proc(n)
W(5, 2*n) ;
end proc: # with W() from A169715, R. J. Mathar, Mar 27 20612
CROSSREFS cf. A002893, A0O2895, Al69715.
Tools for special functions and special numbers Armin Straub
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Advertisement

e Based on the observation that
k 2 .
k 2
Wa(2k) = < ) < 7>,
= \i) \J

knowledge of modular forms allows us to deduce:

THM

Borwein- 1 — T o

o P s T
2010 = 1.57459723755189 . ..

1/3 2/3
3213 (1) L 22B

(5)

Armin Straub

12 /26
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Modular forms

Modular forms are functions on the complex plane that are in-
ordinately symmetric. They satisfy so many internal symmetries
that their mere existence seem like accidents. But they do exist.

Barry Mazur (BBC Interview, “The Proof”, 1997)

DEF  Actions of v = (2%) € SLa(Z):

at +b
e onT€H by ’Y'T—m.
e onf:H—Cby (flsm)(r) = (er + d)Ff (v - 7).

EG  SLy(Z) is generated by T'= (1) and S = ((1) _01)-

1
T-r=71+1, S-7=—=
-

Tools for special functions and special numbers Armin Straub
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Modular forms

There's a saying attributed to Eichler that there are five funda-
mental operations of arithmetic: addition, subtraction, multipli-
cation, division, and modular forms.

Andrew Wiles (BBC Interview, “The Proof”, 1997)

DEF A function f: H — C is a modular form of weight k if

o flgy = f for all v € SLy(Z),
e f is holomorphic (including at the cusp ic0).

=6 fr+)=f(m),  TFf(=1/7) = f(D).

e Similarly, MFs w.r.t. finite-index I" < SLy(Z)
e Spaces of MFs finite dimensional, Hecke operators, . ..

Armin Straub
14 / 26
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Modular forms: a prototypical example

e The Dedekind eta function (q =e*™7)

n(r)=¢" [ -q")

>1
transforms as "

n(r+1) =™ 2(r),  n(=1/1) = V=irn(T).

EG A(7) = (27)12n(7)** is a modular form of weight 12.

Tools for special functions and special numbers Armin Straub




Modularity of the three-step moments

e The even moments 1,3,15,93,639, ...

have the modular parametrizatlon

6 4k
=" W 2k< ) (63T)> .

PR6r) 2 2r)n(37)

modular form modular function

Tools for special functions and special numbers Armin Straub 1




Modularity of the three-step moments

e The even moments 1,3,15,93,639, ...

w5 )

have the modular parametrization

n’( P (67) \
g Ws5(2k) < ) .

.773 , k>0 L 27)n (3T)|

modular form modular function

EG The values of modular functions at quadratic irrationalities

T € Q(v/—d) are algebraic!

PSLQ predicts that for the above modular function x(7), the value
2(i/3) ~ 0.52754 has minimal polynomial 1 — 6z* — 242 — 325.

Tools for special functions and special numbers Armin Straub 15




Integer relation algorithms

e How does the ISC recognize numbers?
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Integer relation algorithms

e How does the ISC recognize numbers?

e PSLQ takes numbers = (1,22, ...,x,) and tries to find integers
m = (my,ma,...,my), not all zero, such that

x-m=mixi+...+mpz, =0.

The vector m is called an integer relation for x.
In case that no relation is found, PSLQ provides a lower bound for the norm of

any potential integer relation.
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Integer relation algorithms

e How does the ISC recognize numbers?

e PSLQ takes numbers = (1,22, ...,x,) and tries to find integers
m = (my,ma,...,my), not all zero, such that

x-m=mixi+...+mpz, =0.

The vector m is called an integer relation for x.
In case that no relation is found, PSLQ provides a lower bound for the norm of

any potential integer relation.

EG Is x = 0.31783724519578224473 . .. algebraic?
na= PSLQ[{1, =, 22, 23, 2*}]
owpj= {1,0,-10,0,1}

That is, « likely has minimal polynomial 1 — 1022 + z*.
Therefore, z = v/3 — V2.

Tools for special functions and special numbers Armin Straub 17./.26




Using PSLQ to find functional relations

e A well-known fact: sin((2n — 1)x) is a linear combination of
sin(z), sin®(z), ..., sin?* ()

Tools for special functions and special numbers Armin Straub 18 /.26




Using PSLQ to find functional relations

e A well-known fact: sin((2n — 1)x) is a linear combination of
sin(z), sin®(z), ..., sin?* ()

=6 mi= With[{x = 1}, PSLQJ
N[{Sin[5x], Sin[z], Sin[z]?, Sin[x]®}, 20]]]
ouf}= {—1,5,—20,16}

In other words,

sin(5z) = 5sin(z) — 20sin®(x) 4 16 sin®(z).

Tools for special functions and special numbers Armin Straub



Cylindrical Algebraic Decomposition

EG Arithmetic mean > geometric mean

inj1]:= CylindricalDecomposition[(a+b)/2 > Sqrt[ab], {a, b}]
oufil= a =0Ab >0

Tools for special functions and special numbers Armin Straub



Cylindrical Algebraic Decomposition

EG Arithmetic mean > geometric mean

inj1]:= CylindricalDecomposition[(a+b)/2 > Sqrt[ab], {a, b}]
oufil= a =0Ab >0

EG If the sum of four positive numbers is 4c and the sum of their
squares is 8c2, then none of the numbers can exceed (1 +/3)c.
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Cylindrical Algebraic Decomposition

EG Arithmetic mean > geometric mean

inj1]:= CylindricalDecomposition[(a+b)/2 > Sqrt[ab], {a, b}]
oufil= a =0Ab >0

EG If the sum of four positive numbers is 4c and the sum of their
squares is 8c2, then none of the numbers can exceed (1 +/3)c.

n2l= CylindricalDecomposition[Exists[{a2, as, a4},
ay Zaz zaz =z aqg > 0N
a; +az +az +ag == 4c N\
a?®+ a2 + ag + a2 == 8c?], {c,a1}]

outPl= ¢ > 0N 2¢c < ay < (1+\/§)C

Tools for special functions and special numbers Armin Straub



Positivity of rational functions

e A rational function

F(‘Tla s ,$d) = Z an1,~~~:nd$?l e

is positive if a,, ., > 0 for all indices.

nd
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Positivity of rational functions

e A rational function

— n nq
F(.’xl,...,$d) = § anl,...,nd$11 Ty

is positive if a,, ., > 0 for all indices.

EG An obviously positive rational function:

1 1
l—z—y+ay (1-z)1-y)

Tools for special functions and special numbers Armin Straub
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Positivity of rational functions

e A rational function

_ § ni ng
F(xla"'axd) - Any,...ngl1” "Xy
ni,...,ng=0

is positive if a,, ., > 0 for all indices.
EG An obviously positive rational function:

1 1
l—z—y+ay (1-z)1-y)

THM 1
1—2—y+ Azy

is positive if and only if A < 1.
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Positivity of rational functions

e A rational function

_ § ni ng
F(xla"'axd) - Any,...ngl1” "Xy
ni,...,ng=0

is positive if a,, ., > 0 for all indices.
EG An obviously positive rational function:

1 1
l—z—y+ay (1-z)1-y)

CONJ The following rational function is positive:

Askey—
Gasper
1972 1
1—(x+y—|—z+w)+%(xy—i—:r:z—i—xw—i—yz—i—yw—i—zw)
This is a rescaled version of 1/e2(1 — 2,1 —y,1 — 2,1 — w).
Tools for special functions and special numbers Armin Straub
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Positivity of rational functions

EG The Askey—Gasper rational function A(z,y,z) and the Szegé
rational function S(z,y, z) are positive.

1
11— (z+y+2) +4ryz

S(a,y,2) 1
x? 72 =
Y 1—(z4+y+2)+ 2(zy + yz + 22)

A(z,y, 2)

THM . e s . - _
s 50, Vhere is a positivity-preserving operator T' such that T-A = §.

Tools for special functions and special numbers Armin Straub
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Positivity of rational functions

EG The Askey—Gasper rational function A(z,y,z) and the Szegé
rational function S(z,y, z) are positive.

1
Alx,y,z) =
(2,9,2) 1—(z+y+2) +4zyz
1
S(x,y,z) =
(@y,2) 1—(z4+y+2)+ 2(zy + yz + 22)
THM . e, . - _
s 50, Vhere is a positivity-preserving operator T' such that T-A = §.

EG The diagonal Taylor terms of A are given by
n n 3
[z"y" 2" Az, y, 2) = ( ) .

By WZ, both sides satisfy the recurrence

(n+ 1)2an+1 = (7n2 +7n+ 2)an + 8n2an_1.

Tools for special functions and special numbers Armin Straub
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Positivity of rational functions

EG The diagonal Taylor terms of S(2x,2y,2z), namely
1,12,198, 3720, 75690, 1626912, . . .,
satisfy the recurrence

2(n+1)%sp41 = 3 (270 4+ 27n + 8) s, — 81(3n — 1)(3n + 1)s5_1.

Tools for special functions and special numbers Armin Straub 2




Positivity of rational functions

EG The diagonal Taylor terms of S(2x,2y,2z), namely
1,12,198, 3720, 75690, 1626912, . . .,
satisfy the recurrence
2(n+1)%sp41 = 3 (270 4+ 27n + 8) s, — 81(3n — 1)(3n + 1)s5_1.

To prove positivity from the recurrence, apply CAD to the formula
(Vn,A,B) n>21,A>0,B>2)A — C>=\B
where 2(n + 1)?C = 3(27n* + 27n + 8)B — 81(3n — 1)(3n + 1) A.
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Positivity of rational functions

EG The diagonal Taylor terms of S(2x,2y,2z), namely
1,12,198, 3720, 75690, 1626912, . . .,
satisfy the recurrence
2(n+1)%sp41 = 3 (270 4+ 27n + 8) s, — 81(3n — 1)(3n + 1)s5_1.

To prove positivity from the recurrence, apply CAD to the formula
(Vn,A,B) n>21,A>0,B>2)A — C>=\B
where 2(n + 1)?C = 3(27n* + 27n + 8)B — 81(3n — 1)(3n + 1) A.

ni= With[{C = ...},
CylindricalDecomposition[ForAll[{n, A, B},
n>1AB>XAANAZ>0,C > AB|,{\}]

outl= 27/2 < A < 3/8(31 + v/385)
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Positivity of rational functions

e The Kauers—Zeilberger rational function

1
l1—(z+y+z+w)+2yzw+ zzw + zyw + zyz) + dryzw

is conjectured to be positive.
e lts positivity implies the positivity of the Askey—Gasper function

1
1—(@4+y+z+w)+ 3(zy+az+ 2w+ yz + yw + 2w)’

PROP The Kauers—Zeilberger function has diagonal coefficients

S-Zudilin
n 2 2
n 2k
I E :
k=0

2013
Tools for special functions and special numbers Armin Straub



Positivity of rational functions

Q  Under what condition(s) is the positivity of a rational function

1

Zi:o ckek(a:l, 000 ,l'd)

h’(xlv s ,.’L'd)

implied by the positivity of its diagonal?

e |s the positivity of h(z1,...,24-1,0) a sufficient condition?

EG 1 . . . . . ..
j has positive diagonal coefficients but is not positive.
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Positivity of rational functions

Q  Under what condition(s) is the positivity of a rational function

1

Zg:o ckek(a:l, 000 ,l'd)

h(£17"'7xd)

implied by the positivity of its diagonal?

e |s the positivity of h(z1,...,24-1,0) a sufficient condition?
1 . . . . . ..
EG j has positive diagonal coefficients but is not positive.
THM 1
S-Zudilin h(g;’ y) =

2013

" 14c(z+y) + cazy
is positive iff h(x,0) and the diagonal of h(z,y) are positive.
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Drunken birds
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Drunken birds

A drunk man will find his way home,
but a drunk bird may get lost forever.
Shizuo Kakutani, 1911-2004
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

A. Straub, W. Zudilin

Positivity of rational functions and their diagonals
Preprint, 2013

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)

Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

A. Straub

Positivity of Szegé's rational function
Advances in Applied Mathematics, Vol. 41, Issue 2, Aug 2008, p. 255-264
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