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Encounters with Apéry numbers and modular forms

Short random walks
Binomial congruences
Positivity of rational functions
Series for 1/7
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

o2 () ()

(n+1)3u,1 — (2n 4+ 1)(A702 + 170 + 5)uy + nup,_1 = 0.

satisfy
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Apéry numbers and the irrationality of ((3)

e The Apéry numbers 1,5,73,1445, ...

o2 () ()

(n+1)3u,1 — (2n 4+ 1)(A702 + 170 + 5)uy + nup,_1 = 0.

satisfy

THM ((3) = 3> | L is irrational.

Apéry '78 n=1

proof The same recurrence is satisfied by the “near”-integers

n

- E 0 1) (£ 3+ it

Then, BE" — ((3). But too fast for ((3) to be rational. O
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Apéry-like numbers

e Recurrence for the Apéry numbers is the case (a,b,c) = (17,5,1) of
(n+ 1)3ups1 — (2n + 1)(an® + an + b)u, + cnu, 1 = 0.

Q Are there other triples for which the solution defined by u_1; = 0,
ug = 1 is integral?
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Apéry-like numbers

e Recurrence for the Apéry numbers is the case (a,b,c) = (17,5,1) of

(n+ 1)3ups1 — (2n + 1)(an® + an + b)u, + cnu, 1 = 0.

Q Are there other triples for which the solution defined by u_1; = 0,
ug = 1 is integral?

e Almkvist and Zudilin find 14 triplets (a, b, ¢).
The simpler case of (n 4 1)*un11 — (an® + an + b)u, + cn’u,—1 = 0 was

similarly investigated by Beukers and Zagier.

e 4 hypergeometric, 4 Legendrian and 6 sporadic solutions
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Apéry-like numbers

e Hypergeometric and Legendrian solutions have generating functions

1 2
ol —a 1 a,l—a| —Cuz
F 27 b 40 F b) «
32< 1,1 az) 1— Cn2? 1( 1 1—Caz) ’

with o = 3,2, % 1 and C, = 2%,33,26 24 . 33,

e The six sporadic solutions are:

(a,b,c) A(n)

(7,3,81) | Yo, (—1)kgn=3k(2) (k) GRY
(11,5,125) | S, (=DF()° (50 + (5.7))
(10,4,64) | ¥ ()G CTY)

(12 1.16) | X, (1))

9,3,-27) | S0, (D7D (5

(17 51) | Y (07N’
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Modular forms

Modular forms are functions on the complex plane that are in-
ordinately symmetric. They satisfy so many internal symmetries
that their mere existence seem like accidents. But they do exist.

Barry Mazur (BBC Interview, “The Proof”, 1997)

DEF  Actions of v = (2%) € SLa(Z):

at +b
e onT€H by ’Y'T—m.
e onf:H—Cby (flsm)(r) = (er + d)Ff (v - 7).

EG  SLy(Z) is generated by T'= (1) and S = ((1) _01)-

1
T-r=71+1, S-7=—=
-
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Modular forms

There's a saying attributed to Eichler that there are five funda-
mental operations of arithmetic: addition, subtraction, multipli-
cation, division, and modular forms.

Andrew Wiles (BBC Interview, “The Proof”, 1997)

DEF A function f: H — C is a modular form of weight k if

o flgy = f for all v € SLy(Z),
e f is holomorphic (including at the cusp ic0).

=6 fr+)=f(m),  TFf(=1/7) = f(D).

e Similarly, MFs w.r.t. finite-index I" < SLy(Z)
e Spaces of MFs finite dimensional, Hecke operators, . ..
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Modular forms: a prototypical example

e The Dedekind eta function (q =e*™7)

n(r)=¢"* [0 —q"

>1
transforms as "

n(r+1)=ey(r),  a(=1/7) = vV=irn(7).

EG A(7) = (27)12n(7)** is a modular form of weight 12.
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Modular forms: Eisenstein series and L-functions

e For k > 1, the Eisenstein series Go(7) is modular of weight 2k.

/ 1
G2k(7_): Z (mT-f—TL)Qk O'k(n) _ Zdln dk;

m,neZ

— 2¢(2k) +

n=1
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Modular forms: Eisenstein series and L-functions

e For k > 1, the Eisenstein series Go(7) is modular of weight 2k.

/ 1
G2k(7_): Z (mT-f—TL)Qk O'k(n) _ Zdln dk;

m,neZ

= 2¢(2k +2(2m)% i (n)g"
- C ) F(Qk‘) 02k—-1\1)q

n=1

e Any modular form for SLy(Z) is a polynomial in G4 and G.

EG A = (60G4)? — 27(140Gs)?
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Modular forms: Eisenstein series and L-functions

e For k > 1, the Eisenstein series Go(7) is modular of weight 2k.

/ 1
Col0)= D, Ty

m,neZ

= 2¢(2k +2(2m)% i (n)g"
- C ) F(Qk‘) 02k—-1\1)q

n=1

ar(n) =Yg, d*

e Any modular form for SLy(Z) is a polynomial in G4 and G.

EG A = (60G4)? — 27(140Gs)?

e The L-function of f(7) =Y " b(n)g" is

L) = o0 [Tt = siso 7 tar = 3 M,

n=1

EG

mi)2k
L(Gax, 5) = 250 C(5)C(s — 2k +1)
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Modularity of Apéry-like numbers

e The Apéry numbers 1,5,73,1145, ...
- 2 /n+ k
satisfy k=0

7 12n

U (

) Aln .

L | n=0 L ]

modular form modular function
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Modularity of Apéry-like numbers

e The Apéry numbers 1,5,73,1145, ...

satisfy =
7 12n
U (
e = 2o A .
L | n=0 L ]
modular form modular function

FACT Not at all evidently, such a modular parametrization exists for
all known Apéry-like numbers!
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Personal encounter in the wild I: Random walks

e n steps in the plane (length 1, random direction)
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e n steps in the plane (length 1, random direction)
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Personal encounter in the wild I: Random walks

e n steps in the plane (length 1, random direction)

e pn(x): probability density of distance traveled

05

06 04]
05
03
04
03 02
o () ()
p3 o P4
o1
05 10 15 20 25 30 1 2 3 4
035
035
030
030
025
025
020
020
o05] 015
ps(z) pe(x)
005 005
1 2 3 4 5 1 2 3 4 5 6
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Personal encounter in the wild I: Random walks

e The probability moments
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Personal encounter in the wild I: Random walks

e The probability moments

j=0
k 2 .
2 2(k —
min =32 (5) (5) ()
NI\ k—
THM B2
Nuyers. Wh(2k) = ( >
-Wan ay,...,0n
52\[;\{0 a1+"'+an:k

Armin Straub
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Personal encounter in the wild I: Random walks

e In particular, Wa(2k) = (2;)
e The average distance traveled in two steps is

Wa(1) = (1}2) - %'
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Personal encounter in the wild I: Random walks

e In particular, Wa(2k) = (2;)

e The average distance traveled in two steps is

Wa(1) = (1}2) - %'

e On the other hand,
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Personal encounter in the wild I: Random walks

e In particular, Wa(2k) = (2;)
e The average distance traveled in two steps is

1 4
Wo(1) = = —.
2(1) <1/2> T
e On the other hand,

w5 () (5579

J=

4> ~ 1.574597238 — 0.126026522:
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Personal encounter in the wild I: Random walks

e In particular, Wa(2k) = (2:)

e The average distance traveled in two steps is
1 > 4

Wa(l) = <1/2

™

e On the other hand,

w5 () (5579

= J
1 _1 1
3Fy (2’ 121 g 4> ~ 1.574597238 — 0.126026522:
THM 1/3 2/3
; 32 1 272 2
S Ws(1) = = =5T% (5 ) + =T 3
Nuyens 16 w 3 4 74 3
= 1.57459723755189 . ..

2010
Armin Straub
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Personal encounter in the wild I: Random walks

05

06 04

03

03 02

o pa2(z) - p3(z) g pa(z)
_ 2
n) = sy
2

( :2\/3 x %,% x2(9 m2) lassical
p3(z) = —— 241 3 classica

™ (34 $2) 1 (3 + xQ) with a spin

111 2\3
pala) = 26— o (233|162 e

2 T 5.1 1084 BSWZ 2011
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Personal encounter in the wild I: Random walks

~
pa(z) ps(z) ~ 0.32993
01 oos
T 2 3 4 ' 1 2 3 4 s
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Personal encounter in the wild I: Random walks

. - P4(0) = pa(1)
N pa(x) ps(x) ~ 0.32993

THM For 7= —1/2+ iy and y > O:

T ,
Zudilin
[ n(27)n(67) > > 6(21 +1)
2011 - 7~ 7 - — 7
m(si - n(r)n(2r)n(3r)n(67)
( n(7)n(37) G -
L ] modular form
modular function
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Personal encounter in the wild I: Random walks

i o P5(0) = pa(1)
pa(x) ps(2) ~ 0.32993

T 2 3 4 ' 1 2 3 7 3

THM For 7= —1/2+ iy and y > O:

Borwein-
S-Wan-

Eay S (M@DNEDNTY _ 6@+ o e
p(s (22 ) = 3TN ryp(2ryi(3)n(or)

modular function

modular form

e When 7 = —1 + £1/=15, one obtains py(1) as an eta-product.
e Modular equations and Chowla—Selberg lead to:

V5

= 1001 TET(E)N(E)T(S) ~ 0.32003

pa(1)

On the ubiquity of modular forms and Apéry-like numbers Armin Straub

5/ 46



Personal encounter in the wild Il: Binomial congruences

John Wilson (1773, Lagrange):

Charles Babbage (1819):

Joseph Wolstenholme (1862):

James W.L. Glaisher (1900):

Wilhelm Ljunggren (1952):

(p—1!'=-1 modp

2p — 1
(p =1 modp?
p—1
2p — 1
<p =1 modp?
p—1

-1
(mp >El modp3
p—1

ap a 3
)= (3) o

s WO
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Personal encounter in the wild Il: Binomial congruences

John Wilson (1773, Lagrange): (p—1!'=-1 modp 9
2p—1 9 ‘
Charles Babbage (1819): b1 =1 modp
2p—1 3 g
Joseph Wolstenholme (1862): L) = 1 modp A
p— WA
-1 <
James W.L. Glaisher (1900): (";p . > =1 modp? aa
— 2
Wilhelm Ljunggren (1952): (ap) = <a> mod p? 1

THM 1 2_1
s 2011 @y @ _ a b+1\p (¢¥ — 1)2 mod [p]3
P25 bp q b g7 b+1 2 12 q
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Personal encounter in the wild Il: Binomial congruences

e Wolstenholme's congruence is the m = 1 case of:
The sequence A(n) = (2:) satisfies the supercongruence (p=5)

A(pm) = A(m) modp®.
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Personal encounter in the wild Il: Binomial congruences

e Wolstenholme's congruence is the m = 1 case of:
The sequence A(n) = (2:) satisfies the supercongruence (p=5)

A(pm) = A(m) modp®.
e The same congruence is satisfied by the Apéry numbers
n 2 2
n n+k
A(n) = .
=20 (")

Conjecturally, this extends to all Apéry-like numbers. Osburn, Sahu '09
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Personal encounter in the wild Il: Binomial congruences

e Wolstenholme's congruence is the m = 1 case of:
The sequence A(n) = (*") satisfies the supercongruence  (p > 5)

A(pm) = A(m) modp®.
e The same congruence is satisfied by the Apéry numbers
n 2 2
n n+k
A(n) = .
=20 (")

Conjecturally, this extends to all Apéry-like numbers. Osburn, Sahu '09

Q How does the g-side of supercongruences for Apéry-like numbers
look like?
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Personal encounter in the wild Ill: Positivity

e A rational function

_ ny ng
F(xy,...,2q) = g Qny g Ty Ty
ni,...,ng=0

is positive if ap, . n, > 0 for all indices.

EG The Askey—Gasper rational function A(x,y,z) and the Szegd
rational function S(z,y, z) are positive.

1
T 1—(z+y+2)+4dayz

5(@,9,2) 1
‘,177 7Z =
Y 1—(z+y+2)+ 3(zy +yz + 22)

A(z,y,2)

e Both functions are on the boundary of positivity.
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Personal encounter in the wild Ill: Positivity

e WZ shows that the diagonal terms a,, of A(x,y, z) satisfy
(n+ 1)2ant1 = (Tn* + Tn + 2)ay, + 8n’an_1.
This proves that they equal the Franel numbers
" 3
=3 (k) |
k=0

e Using the modular parametrization of the associated Calabi—Yau
differential equation, we have

o0 1 12

n __ 373
> an _1—2z2F1< 1
n=0
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19 / 46



Personal encounter in the wild Ill: Positivity

e The Kauers—Zeilberger rational function

1
l—(z+y+z+w)+2yzw+ zzw + zyw + zyz) + dryzw

is conjectured to be positive.
e lts positivity implies the positivity of the Askey—Gasper function

1
1—(@+y+z+w)+ 3(zy+ 2z 43w+ yz + yw + 2w)’

PROP The Kauers—Zeilberger function has diagonal coefficients

S-Zudilin
n 2 2
n 2k
I E :
k=0

2013
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Personal encounter in the wild Ill: Positivity

e Under what condition(s) is the positivity of a rational function

1

Zg:o Ck:ek‘(xla ce. ,CL'd)

AT

implied by the positivity of its diagonal?

e Is the positivity of h(z1,...,24-1,0) a sufficient condition?

EG 1+i+y has positive diagonal coefficients but is not positive.
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Personal encounter in the wild Ill: Positivity

e Under what condition(s) is the positivity of a rational function

1

Zg:o Ck:ek‘(xla ce. ,CL'd)

AT

implied by the positivity of its diagonal?

e Is the positivity of h(z1,...,24-1,0) a sufficient condition?

EG 1+i+y has positive diagonal coefficients but is not positive.

-Zudilin =
2013 Y 1+ci(x+y) + cozy

is positive iff h(x,0) and the diagonal of h(z,y) are positive.
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Personal encounter in the wild IV: Series for 1/7

2 1\° 1.3\? 1.35)\°
Z_1-5(= i IR O
2-1-5(3) +9(53) - (5ae) +

1/2);

I
WE

e
w

(—1)"(4n + 1)

e Included in first letter of Ramanujan to Hardy
but already given by Bauer in 1859 and further studied by Glaisher
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Personal encounter in the wild IV: Series for 1/7

2 1\° 1.3\° 1.35)\°
Z_1-5(= il IR O
2-1-5(3) +9(53) - (5ae) +
1/2)3
n!3

ol

(—1)"(4n + 1)

e Included in first letter of Ramanujan to Hardy
but already given by Bauer in 1859 and further studied by Glaisher

e Limiting case of the terminating (Zeilberger, 1904)

T3/2+m) < (1/2)2(—m), .
r'3/2)T(m+1) B Z m(—l) (4n+1)

n=0

WhICh haS a VVZ prOOf Carlson’s theorem justifies setting m = —1/2.
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Personal encounter in the wild IV: Series for 1/7

o 1 2v/2 & (4n)! 1103 + 263901
1988 7 9801 > nl4 3964n
n=0
ce 1 Z ™ (6n)! 13591409 + 545140134n
"loss " 3n 'n'3 64032037+3/2
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Personal encounter in the wild IV: Series for 1/7

(4n)! 1103 + 26390n

nl4

3964n

"(6n)! 13591409 + 545140134n

EG 0o
Gosper l _ 2\/§ Z
e 9801
n=0

EG

Chud-

: —12

e ji: Sn Mﬂ3
o 520__ 1054n + 233
2012 - Z 48071

e By the first Strehl identity,

6403203n+3/2

GG

2k

n

)(_1)k82kn
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Personal encounter in the wild IV: Series for 1/7

e Suppose we have a sequence a,, with modular parametrization

n=0

modular modular
function form
e Then o
n_ (1)
E an(A+ Bn)z(t)" = Af(1) + B (7).

n=0
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Personal encounter in the wild IV: Series for 1/7

e Suppose we have a sequence a,, with modular parametrization

n=0

modular modular
function form

e Then

> an(A+ Bn)z(r)" = Af(T)+ B 2(7) f(7).
n=0

FACT o For 7 € Q[v/—d], z(7) is an algebraic number.
e f'(7) is a quasimodular form.

e The prototypical Eo(7) satisfies
6

Ea(7)|2(S = 1) = —

™T

e These are the main ingredients for series for 1 /7. Mix and stir.
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PART Il

A secant Dirichlet series and Eichler integrals of Eisenstein series

Ys(1) = Z beC(nﬂ;nT)

n=1
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Secant zeta function

e Lalin, Rodrigue and Rogers introduce and study

o)
Z sec 7TnT
n=1

e Clearly, 15(0) = ((s). In particular, ¥2(0) = %-.

EG 2

(V2 =-3. (V6= ==
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Secant zeta function

e Lalin, Rodrigue and Rogers introduce and study

[o.¢]
Z sec 7TnT

n=1
e Clearly, 15(0) = ((s). In particular, ¥2(0) = %-.

EG 7'(2 27T2

HRRS Pa(V2) = —— ha(V6) =

CONJ For positive integers m, r,

Yom (V) € Q- ™.

On the ubiquity of modular forms and Apéry-like numbers Armin Straub 26 / 46
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Secant zeta function: Motivation

e Euler's identity:

o0

D = ) G

n=1

e Half of the Clausen and Glaisher functions reduce, e.g.,

2. cos(nT) 2 o a2
S i =24

n=1

e Ramanujan investigated trigonometric Dirichlet series of similar type.
From his first letter to Hardy:

i coth(mn) 1977
— n” 56700

In fact, this was already included in a general formula by Lerch.
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Secant zeta function: Convergence

o y(7) = 3 24T hag singularity at rationals with even denominator

ns
L I A I i
TN I ERE T i or
[N [ [T 1y
0 B Y T i
ab o fe oy st
[ [ [INNR VN iy
iy 1y IR 1y
A ) A e \
1 | i B Rl - —t L bt
e N [ o 0.2 04 [oX 08 "0
il fez [T Tfoal S 10
1 I I ot s
2 o i
1 i 181 I it
1NN I A IO I !
I IA N R I i ot
1K I 11 i
1o (7) truncated to 4 and 8 terms Re 9o (7 + €i) with e = 1/1000
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Secant zeta function: Convergence

o (1) =>] SeC(nLSW) has singularity at rationals with even denominator

IR EUH
I I R T N B A 10
iy [l IR i [l
N I df
RISEEHEY I REY BT N 5L
[ i (I V. i i
[ N B A o
L ) A |
1 I B . Rl 1 5 — . ot :
) i " e 0.2 04 o 08 0
i fez [T Toa) 08 \L_10
i [ Lo
o e Sy N
18 I IR ] \ ]
" R ] P
S TN B N T o -10
e I [ [ L il
1o () truncated to 4 and 8 terms Re 9o (7 + €i) with e = 1/1000

THM The series () = 3" <) converges absolutely if

Lalin— ns
oses @ T =p/q with g odd and s > 1,
2013

® T is algebraic irrational and s > 2.

e Proof uses Thue-Siegel-Roth, as well as a result of Worley when
s =2 and T is irrational
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Secant zeta function: Functional equation

e Obviously, ¥s(1) = > % satisfies 5(7 + 2) = 15(7).

THM

LRZT)’BBS (1 + T)2m_1/(/]2m ( ; > - (1 - T>2m_1¢2m ( - )

1+7 1—7

= 12 rat(7)
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Secant zeta function: Functional equation

e Obviously, ¥s(1) = > % satisfies 5(7 + 2) = 15(7).

THM

2m—1 T 1 \2m—1 T
Ges e (£) - @ e (1)

= 12 rat(7)

proof Collect residues of the integral

I — 1 / sin (77z) dz
7 2mi Jo sin(r(1 + 7)2) sin(w(1 — 7)2) 251

C are appropriate circles around the origin such that I — 0 as
radius(C') — oo. O
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Secant zeta function: Functional equation

o Obviously, 15(7) = 3 2 7) gatisfies 1, (7 + 2) = 1hs(7).

ns
THM - .
2m—1 _ _ ~\2m—1
Ges e (£) - @ e (1)
— ﬂ,Zm[ZZm—l] SiH(TZ)

sin((1 — 7)z)sin((1 + 7)z)

proof Collect residues of the integral

I — 1 / sin (77z) dz
7 2mi Jo sin(r(1 + 7)2) sin(w(1 — 7)2) 251

C are appropriate circles around the origin such that I — 0 as
radius(C') — oo. O
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Secant zeta function: Functional equation

o Obviously, ¥s(7) = 3 U™ catisfies 1), (7 + 2) = ¥s(7).

nS
THM - _
LRR, BS 2m—1 _ _ \2me1
2013 (L+7)"" om (1+T> (1= 7)o, (1—7)
— g2 [2ml] SiH(’T.Z)

sin((1 — 7)2) sin((1 + 7)2)
P ab = —k ((ZT + b)
e Fle(¢5)(r) = (er + )7 F (£
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Secant zeta function: Functional equation

o Obviously, 15(7) = 3 2 7) gatisfies 1, (7 + 2) = 1hs(7).

THM

LRR. BS (1 +7)*™ Lapo, (1 _7'—_7_> — (1 =7)*" (1 i 7_)
_ omrom—1 sin(7z)
=" ]sin((l —7)z)sin((1 4 7)z)

DEF Fle(24)(r) = (e +d)*F (10

operator

e In terms of 1 1 0 —1 1 0
(o 1) 5= 0) me)

the functional equations become

Yoml|1_om(T? —1) =0,
Vom|1—om(R? — 1) = 7™ rat(7).
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Secant zeta function: Functional equation

e The matrices

s (12 2 (10
T_<01’ =12 1)

together with —1, generate

['(2)={yeSL(Z): ~=1I (mod?2)}.

COR For any v € T'(2),

Yom|1-2m(y — 1) = 7™ rat(7).
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Secant zeta function: Special values

THM For positive integers m, r,

Yom(VT) € Q- 7.

2013

proof e Note that X rY
<Y X) V=

e As shown by Lagrange, there are X and Y which solve
Pell's equation X2 _,y2o 1
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Secant zeta function: Special values

THM For positive integers m, r,

LRR, BS
2013
Yom(VT) € Q- ™
proof e Note that X
(¥ %) vi=vr

e As shown by Lagrange, there are X and Y which solve
Pell's equation X2 _,y2o 1

e Since 5
_ X rY _ X2 1 py?2 2rXY . F(2)
Ty x/) T\ o2xy Xx24,y2? ’

the claim follows from the evenness of 19, and

¢2m‘1—2m(7 1) = rat( )- ]
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Eichler integrals

e Fis an Eichler integral if D*~1F is modular of weight k.

e Such Eichler integrals are characterized by
F|o_g(y—1) = poly(7), degpoly < k — 2.

e poly(7) is a period polynomial of the modular form f.
The period polynomial encodes the critical L-values of f.
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Eichler integrals

F is an Eichler integral if D*~'F is modular of weight k.

Such Eichler integrals are characterized by

F|o_g(y—1) = poly(7), degpoly < k — 2.

poly(7) is a period polynomial of the modular form f.
The period polynomial encodes the critical L-values of f.

For a modular form f(7) = > a(n)q™ of weight k, define

= [ 1) - a)] (- 72z
_ (=D)Fr(k— 1) i": a(n) .

)
(2mi)k—1 nk—1

n=1

If a(0) = 0, f is an Eichler integral as defined above.
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Eichler integrals of Eisenstein series

e For the Eisenstein series G,

(2mi) 2k &

Gor(T) = 2¢(2k) + 2°5 > " on—1(n)q",
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Eichler integrals of Eisenstein series

e For the Eisenstein series G,

Gar(T) = 2¢(2k) +

)

n2k—1qn
P PR
~ . T 02k—1\N) ,
L _ 1 n qn
Pl
e The period “polynomial” Gaoy|o—ox(S — 1) is given by
k
X —— (X -1
2k: _ 1 Z 2k — 25! * amztt )
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Ramanujan’s formula

THM For «, B > 0 such that a8 = 72 and m € Z,

Ramanujan,

Grosswald
72m 1 €9 72m 1
e2an _ - e28n _

n= 1
m+1 B B
_22m 2 : ( 1 2n 2m—2n+2 am,nJFan
) (2m — 2n + 2)!
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Ramanujan’s formula

THM For «, B > 0 such that a8 = 72 and m € Z,

72m 1 a —2m 1
a"”{ Glil) oo }=<ﬁ>-m{“2m“ +3 G }

Grosswald
n=1

m+1

BQn B27n 2n+2
_22777, 1 amfnJﬁl n.
Z( ) (2m — 2n + 2)! p
1 _ 1 zy __ 1
e=1 = 3 c0t(3) — 3
e In terms of 0o
Z cot(mnr)
n=1
Ramanujan’s formula takes the form
Ear1lo-ar(S — 1) = (=1)"(2m)**~ 12 st 7B2k T
(2k — 2s)!
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Secant zeta function

>

EG

cot 7rn7'
Tp2k—1

is an Eichler integral of the Eisenstein series Gop.

cot(nr) = 1 Z !

T T
ez +J N

lim E
N—o0 4

j=—N
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Secant zeta function

t( . . . . .
> COQZ"f is an Eichler integral of the Eisenstein series Gay,.

EG 1

1
cot(nr) = — Z ,
T ez T+

N

lim E
N—o0

j=—N

o ) Sec(’;;” is an Eichler integral of an Eisenstein series with character.

= seo () = 2 x-4(j)

WjeZ T+

/ —
o Z (Xf% is an Eisenstein series of weight 2k + 1.
mr +n

m,neZ
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Eisenstein series

e More generally, we have the Eisenstein series

7 x(m)i(n)

(mT +n)k’

Ek(T;Xvw) = Z

m,ne”L

where x and 1 are Dirichlet characters modulo L and M.
e We assume x(—1)1(—1) = (—1)¥. Otherwise, Ex(7; x,¢) = 0.
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Eisenstein series

e More generally, we have the Eisenstein series

7 x(m)i(n)

(mT +n)k’

Ek(T;Xvw) = Z

m,ne”L
where x and 1 are Dirichlet characters modulo L and M.

e We assume x(—1)1(—1) = (—1)¥. Otherwise, Ex(7; x,¢) = 0.

PROP Modular transformations: v= (g Mb) e SLy(Z)
o Ep(m5 %) ey = X(d)y(d) Bk (T3 X, )
o Ei(7;x,9)|6S = x(=1)Ex(1;9,X)

PROP |f ¢) is primitive, the L-function of E(7) = Ex(7; x, ) is

L(E,s) = const-M*L(x, s)L(¢,1 — k + s).
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Generalized Bernoulli numbers

Eu ((@n) = —=(2mi)?"

e For integer n > 0 and primitive x with x(—1) = (-1)",
(x of conductor L and Gauss sum G(x))

Ln,y) = (_1)n—1G(x> <2 i)"BnQ_(

L(1 —n,x) = —Bny/n.

e The generalized Bernoulli numbers have generating function

> 5 _ M

a=1
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Period polynomials of Eisenstein series

I;I'Hdl\lls For k > 3 and primitive x # 1, ¢ #£ 1,
Er(X;x,9) —¢(—1)Xk_2b7k(—1/X;w,x)

2013
Bk S’X BS"Z) s—1
—constz k — s)ILk~ sslMsX

const = —x(—1)G (x

G(d’) (2772
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Period polynomials of Eisenstein series

THIVL For k > 3 and primitive x # 1, ¢ # 1,
Berndt-
2013 5 -
Ex(X;x,¢) —¢(— )X*2Ep(—1/X; 4, X)
Bk S’X BS"Z s—1
—constz k—s) |Lk sslMsX
Nk
const = —x(~1)G (x) () ZTL

COR For k > 3, primitive x, ¢ # 1, and n such that L|n,

Berndt-S
2013 R=(19)
Ep(X;x,¥)|2-k(1 — R") B
k
By X B 59 ys—1 k—1-—s
constz h— 8L Ss'MSX (1-(nX+1) ).
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Unimodular polynomials

DEF p(z) is unimodular if all its zeros have absolute value 1.
e Kronecker: if p(x) € Z[z] is monic and unimodular, then all nonzero
roots are roots of unity.

- 2+ §o 1= (o+ ) (o + 354)
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Unimodular polynomials

DEF p(z) is unimodular if all its zeros have absolute value 1.

e Kronecker: if p(x) € Z[z] is monic and unimodular, then all nonzero
roots are roots of unity.

- 2+ §o 1= (o+ ) (o + 354)

THM P(z) is unimodular if and only if

Cohn
1922 e P(z) =ap+ a1z + ...+ apz™ is self-inversive, i.e.

ax = €a,_x, for some || =1, and

e P'(x) has all its roots within the unit circle.
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Ramanujan polynomials

e Following Gun—Murty—Rath, the Ramanujan polynomials are

k
_ BS Bk—S s—1
BlX) =2 o™

s=0

UL All nonreal zeros of Ry (X) lie on the unit circle.

Sy For k > 2, Roi(X) has exactly four real roots which approach +2*1.

Wang '11

THM 2k — 1
Lall’n'—153myth R2k} (X) + M
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Ramanujan polynomials

Rao(X)
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Ramanujan polynomials

Rao(X)
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Generalized Ramanujan polynomials

e We consider two kinds of generalized Ramanujan polynomials:

k k—s—1
. By Br_sy (LX
(X, ) = Zo st (k—s)! (M)
k k—s—1
. BSvX Bk‘*S,l/) X — 1 s—1
s=0

e Obviously, Si(X;1,1) = Ri(X).
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Generalized Ramanujan polynomials

e We consider two kinds of generalized Ramanujan polynomials:

k k—s—1
. By Br_sy (LX
(X, ) = Zo st (k—s)! (M)
k k—s—1
. BSvX Bk‘*S,l/) X — 1 s—1
s=0

e Obviously, Si(X;1,1) = Ri(X).

PROP o For k > 1, Rop(X;1,1) = Rop(X).

Berndt-S

2013 e Ri(X;x,) is self-inversive.
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Generalized Ramanujan polynomials

e We consider two kinds of generalized Ramanujan polynomials:

k BS’X Bk—5717[) (M>k81

—~ s (k—s)!\ M
k k—s—1
. BSvX Bk*SﬂZJ X — 1 s—1
s=0

e Obviously, Si(X;1,1) = Ri(X).

PROP o For k> 1, Ro(X;1,1) = Roy(X).

2013 e Ri(X;x,) is self-inversive.

CONJ Let x, % be nonprincipal real Dirichlet characters.
Berndt-S

2015 e Ri(X;x,%) is unimodular.
e Si(X;x,x) is unimodular (up to trivial zero roots).
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Generalized Ramanujan polynomials

L L I i L ! ! L (i
-1.0 -05 0.0 05 10 -10 -05 00 05 10

Ryg(X51,x-4) S20( X5 X4, X—4)
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Generalized Ramanujan polynomials

Ryg(X51,x-4) S20( X5 X4, X—4)

On the ubiquity of modular forms and Apéry-like numbers Armin Straub

43/ 46



Unimodularity of period polynomials

e Both kinds of generalized Ramanujan polynomials are, essentially,
period polynomials: X, ¥ primitive, nonprincipal

Sk(X;x, %) = const - | Ep(X;x, %) — (=) X 2By (—1/X;4,X)
Ri(LX + 1;x,%) = Sp(X;x, %) |2k (1 — RY)
= const - Ej,(X; X, ¥)|2—&(1 — R")
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Unimodularity of period polynomials

e Both kinds of generalized Ramanujan polynomials are, essentially,
period polynomials: X, ¥ primitive, nonprincipal

Sk(Xa X 77/)) = const - Ek(X7X7Q;) - w(_l)Xk_QEk(_l/X7 &72)
Ri(LX +1;x,%) = Sp(X;x, ) |2—k(1 — RF)
= const - Ej,(X; X, ¥)|2—&(1 — R")

THM For any Hecke cusp form (for SLo(Z)), the odd part of its period

Conrey-

Farmer- 1
Jfamer. - polynomial has
2012 ..
e trivial zeros at 0, +2, j:%,

e and all remaining zeros lie on the unit circle.

THM For any Hecke eigenform (for SLy(Z)), the full period polynomial

EI-Guindy—

Rai2013 h3s all zeros on the unit circle.
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Application: Grosswald-type formula for Dirichlet L-values

ot For a € H, such that Ry.(a; x,1) = 0 and k=2 41,

2013 (k> 3, x primitive, x(—=1) = (—=1))

a—1 o= 1-1/c
L(k‘_17X):27T2170[k 2 |: k( 3 Xo )_ak 2Ek( L/ 1X>1):|

B Z X(n k—2
T 1= ak 2 nk— 1— eQﬂ'zn(l a)/L 1 — e2min(l/a=1)/L | °
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Application: Grosswald-type formula for Dirichlet L-values

THM For o € H, such that Ry(a;x,1) = 0 and of=2 # 1,

Berndt-S
2013 (k> 3, x primitive, x(—=1) = (—=1))

a—1 o= 1-1/c
L(k:_17X):27T2170[k 2 |: k( 3 Xo )_ak 2Ek( L/ 1X>1):|

B Z X(n k—2
T 1= ak 2 nk— 1— 6271'21’7,(1 a)/L 1 — e2min(l/a=1)/L | °

THM As 3 € M, B2#=2 £ 1, ranges over algebraic numbers, the values

Gun—
Murty—
Rath

2011 % {Egk(ﬂ;l,l) —ﬂ%_QE?k(_l/B;Ll)}

contain at most one algebraic number.
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THANK YOQOU!

Slides for this talk will be available from my website:
http://arminstraub.com/talks

B. Berndt, A. Straub

On a secant Dirichlet series and Eichler integrals of Eisenstein series
Preprint, 2013

A. Straub, W. Zudilin

Positivity of rational functions and their diagonals
Preprint, 2013

M. Rogers, A. Straub

A solution of Sun’s $520 challenge concerning 520/
International Journal of Number Theory, Vol. 9, Nr. 5, 2013, p. 1273-1288

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)

Densities of short uniform random walks
Canadian Journal of Mathematics, Vol. 64, Nr. 5, 2012, p. 961-990

A. Straub
A g-analog of Ljunggren’s binomial congruence
DMTCS Proceedings: FPSAC 2011, p. 897-902
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