Arithmetic aspects of short random walks

Number Theory Seminar

Armin Straub

September 27, 2012

University of Illinois at Urbana-Champaign

Based on joint work with:

Jon Borwein

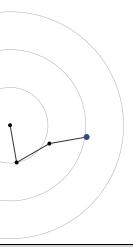
James Wan

Wadim Zudilin

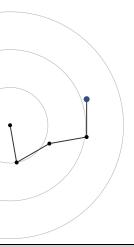
- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- Q What is the distance traveled in n steps? $p_n(x)$ probability density $W_n(s)$ sth moment

- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad \text{sth moment}$

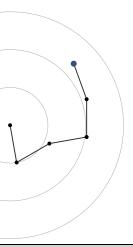
- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad \text{sth moment}$



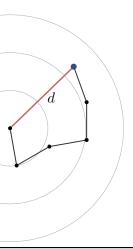
- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad \text{sth moment}$



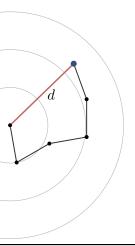
- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad s\text{th moment}$



- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad \text{sth moment}$



- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density}$ $W_n(s) \quad \text{sth moment}$



- *n*-step uniform planar random walk in the plane:
 - n steps, each of length 1,
 - taken in randomly chosen direction
- What is the distance traveled in n steps? $p_n(x) \quad \text{probability density} \\ W_n(s) \quad s\text{th moment}$

EG
$$W_2(1) = \frac{4}{\pi}$$

Random walks are only about 100 years old

 Karl Pearson asked for $p_n(x)$ in Nature in 1905. This famous question coined the term random walk.

The Problem of the Random Walk.

Can any of your readers refer me to a work wherein I should find a solution of the following problem, or failing the knowledge of any existing solution provide me with an original one? I should be extremely grateful for aid in the matter.

A man starts from a point O and walks I yards in a straight line; he then turns through any angle whatever and walks another l yards in a second straight line. He repeats this process n times. I require the probability that after these n stretches he is at a distance between τ and $r + \delta r$ from his starting point, O.

The problem is one of considerable interest, but I have only succeeded in obtaining an integrated solution for two stretches. I think, however, that a solution ought to be found, if only in the form of a series in powers of 1/n. when n is large. KARL PEARSON.

The Gables, East Ilsley, Berks,

Applications include:

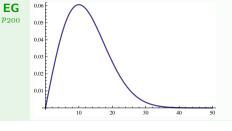
- dispersion of mosquitoes
- random migration of micro-organisms
- phenomenon of laser speckle

Long random walks

THM Rayleigh, 1905

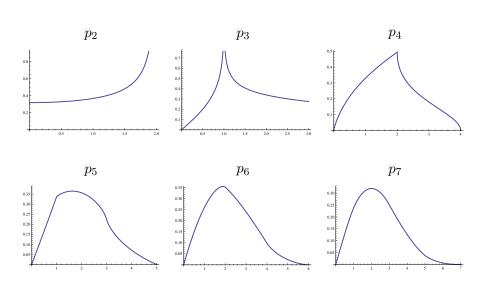
 $p_n(x) \approx \frac{2x}{n} e^{-x^2/n}$

for large n

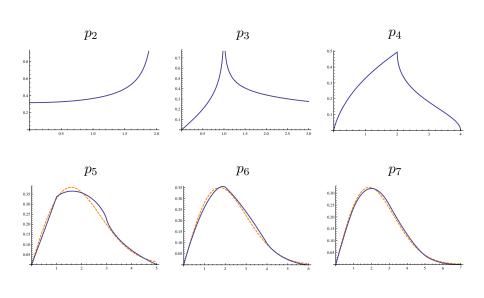


The lesson of Lord Rayleigh's solution is that in open country the most probable place to find a drunken man who is at all capable of keeping on his feet is somewhere near his starting point! Karl Pearson. 1905

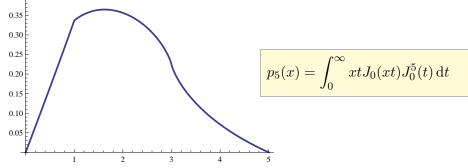
Densities of short walks



Densities of short walks



The density of a five-step random walk



...the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line... Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J products to give extremely close approximations to such simple forms as horizontal lines.

Karl Pearson, 1906

H. E. Fettis
On a conjecture of Karl Pearson
Rider Anniversary Volume, p. 39–54, 1963

Classical results on the densities

$$p_2(x) = \frac{2}{\pi\sqrt{4-x^2}}$$
 easy
$$p_3(x) = \operatorname{Re}\left(\frac{\sqrt{x}}{\pi^2}K\left(\sqrt{\frac{(x+1)^3(3-x)}{16x}}\right)\right)$$
 G. J. Bennett
$$p_4(x) = ??$$

$$\vdots$$

$$p_n(x) = \int_0^\infty xtJ_0(xt)J_0^n(t)\,\mathrm{d}t$$
 J. C. Kluyver

1906

Classical results on the densities

$$p_2(x) = \frac{2}{\pi\sqrt{4 - x^2}}$$

$$p_3(x) = \operatorname{Re}\left(\frac{\sqrt{x}}{\pi^2} K\left(\sqrt{\frac{(x+1)^3(3-x)}{16x}}\right)\right)$$

$$p_4(x) = ??$$

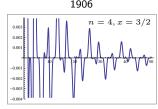
$$\vdots$$

$$p_n(x) = \int_0^\infty xt J_0(xt) J_0^n(t) dt$$

easy

G. J. Bennett

J. C. Kluyver



An exact probability

THM The probability that a random walk is within one unit from its origin after n steps is ...?

An exact probability

THM The probability that a random walk is within one unit from its origin after n steps is $\frac{1}{n+1}$.

An exact probability

THM The probability that a random walk is within one unit from its origin after n steps is $\frac{1}{n+1}$.

Proof. The cumulative density function P_n can be expressed as

$$P_n(x) = \int_0^\infty x J_1(xt) J_0^n(t) dt.$$

Then:

$$P_n(1) = \frac{J_0(0)^{n+1}}{n+1} = \frac{1}{n+1}.$$

· Recently: remarkably short proof by Olivier Bernardi

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$
$$= \int_0^1 \left| 1 + e^{2\pi i y} \right| dy$$

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$\begin{vmatrix} 1 + e^{2\pi i y} | \\ = |1 + \cos(2\pi y) + i\sin(2\pi y)| \\ = \sqrt{2 + 2\cos(2\pi y)} \\ = 2\cos(\pi y) \end{vmatrix} = \int_0^1 \left| 1 + e^{2\pi i y} \right| dy$$

$$= \int_0^1 2\cos(\pi y) dy$$

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$\begin{vmatrix} 1 + e^{2\pi i y} | & & \\ = |1 + \cos(2\pi y) + i\sin(2\pi y)| & & \\ = \sqrt{2 + 2\cos(2\pi y)} & & \\ = 2\cos(\pi y) & & \\ & = \frac{4}{\pi} \approx 1.27324 \end{aligned}$$

The average distance in two steps:

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$\begin{vmatrix} 1 + e^{2\pi i y} | & & \\ = |1 + \cos(2\pi y) + i\sin(2\pi y)| & & \\ = \sqrt{2 + 2\cos(2\pi y)} & & \\ = 2\cos(\pi y) & & \\ & = \frac{4}{\pi} \approx 1.27324 \end{aligned}$$

Mathematica 7 and Maple 14 think the double integral is 0.
 Better: Mathematica 8 just does not evaluate the integral.

$$W_2(1) = \int_0^1 \int_0^1 \left| e^{2\pi i x} + e^{2\pi i y} \right| dx dy = ?$$

$$\begin{vmatrix} 1 + e^{2\pi i y} | & & \\ = |1 + \cos(2\pi y) + i\sin(2\pi y)| & & \\ = \sqrt{2 + 2\cos(2\pi y)} & & \\ = 2\cos(\pi y) & & \\ & = \frac{4}{\pi} \approx 1.27324 \end{aligned}$$

- Mathematica 7 and Maple 14 think the double integral is 0.
 Better: Mathematica 8 just does not evaluate the integral.
- This is the average length of a random arc on a unit circle.

DEF

The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

 $W_4(1) \approx 1.79909248$
 $W_5(1) \approx 2.00816$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

 $W_4(1) \approx 1.79909248$
 $W_5(1) \approx 2.00816$

On a supercomputer:

Lawrence Berkeley National Laboratory, 256 cores

$$W_5(1) \approx 2.0081618$$

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

• On a desktop:

$$W_3(1) \approx 1.57459723755189365749$$

 $W_4(1) \approx 1.79909248$
 $W_5(1) \approx 2.00816$

On a supercomputer:

Lawrence Berkeley National Laboratory, 256 cores

$$W_5(1) \approx 2.0081618$$

• Hard to evaluate numerically to high precision. Monte-Carlo integration gives approximations with an asymptotic error of $O(1/\sqrt{N})$ where N is the number of sample points.

DEF The sth moment $W_n(s)$ of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

n	s = 1	s = 2	s=3	s=4	s=5	s = 6	s = 7
2	1.273	2.000	3.395	6.000	10.87	20.00	37.25
3	1.575	3.000	6.452	15.00	36.71	93.00	241.5
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.

DEF The sth moment
$$W_n(s)$$
 of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

n	s=1	s=2	s=3	s=4	s=5	s = 6	s = 7	
2	_1.273	2.000	3.395	6.000	10.87	20.00	37.25	
3	/ 1.575	3.000	6.452	15.00	36.71	93.00	241.5	
4	1.799	4.000	10.12	28.00	82.65	256.0	822.3	
5	2.008	5.000	14.29	45.00	152.3	545.0	2037.	
6	2.194	6.000	18.91	66.00	248.8	996.0	4186.	
		'	'	'			'	
$W_2(1) = \frac{4}{2}$								

DEF The sth moment
$$W_n(s)$$
 of the density p_n :

$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\mathbf{x}$$

The sth moment
$$W_n(s)$$
 of the density p_n :
$$W_n(s) := \int_0^\infty x^s p_n(x) \, \mathrm{d}x = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \ldots + e^{2\pi i x_n} \right|^s \, \mathrm{d}\boldsymbol{x}$$

Even moments

n	s = 0	s=2	s=4	s = 6	s = 8	s = 10	Sloane's
2	1	2	6	20	70	252	A000984
3	1	3	15	93	639	4653	A002893
4	1	4	28	256	2716	31504	A002895
5	1	5	45	545	7885	127905	A169714
6	1	6	66	996	18306	384156	A169715

Even moments

n	s = 0	s=2	s=4	s = 6	s=8	s = 10	Sloane's
2	1	2	6	20	70	252	A000984
3	1	3	15	93	639	4653	A002893
4	1	4	28	256	2716	31504	A002895
5	1	5	45	545	7885	127905	A169714
6	1	6	66	996	18306	384156	A169715

$$W_{3}(2k) = \sum_{j=0}^{k} {k \choose j}^{2} {2j \choose j}$$

$$W_{4}(2k) = \sum_{j=0}^{k} {k \choose j}^{2} {2j \choose j} {2(k-j) \choose k-j}$$

$$W_{5}(2k) = \sum_{j=0}^{k} {k \choose j}^{2} {2(k-j) \choose k-j} \sum_{\ell=0}^{j} {j \choose \ell}^{2} {2\ell \choose \ell}$$

A combinatorial formula for the even moments

• sth moment $W_n(s)$ of the density p_n :

$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s dx$$

THM Borwein-Nuyens-S-Wan 2010

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2$$

A combinatorial formula for the even moments

• sth moment $W_n(s)$ of the density p_n :

$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s dx$$

THM Borwein-Nuyens-S-Wan 2010

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2$$

• $W_n(2k)$ counts the number of abelian squares: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.

A combinatorial formula for the even moments

• sth moment $W_n(s)$ of the density p_n :

$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi i x_1} + \dots + e^{2\pi i x_n} \right|^s dx$$

THM Borwein-Nuyens-S-Wan 2010

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2$$

- $W_n(2k)$ counts the number of abelian squares: strings xy of length 2k from an alphabet with n letters such that y is a permutation of x.
- Introduced by Erdős and studied by others.

EG $acbc \ ccba$ is an abelian square. It contributes to $f_3(4)$.

L. B. Richmond and J. Shallit

Counting abelian squares

The Electronic Journal of Combinatorics, Vol. 16, 2009.

EG $W_2(2k)$: abelian squares of length 2k from 2 letters b a b a a a b a a b

EG $W_2(2k)$: abelian squares of length 2k from 2 letters b a b a a b a a b

EG $W_2(2k)$: abelian squares of length 2k from 2 letters b **a** b **a** a a b a a b

Hence $W_2(2k) = \binom{2k}{k}$.

 $W_2(2k)$: abelian squares of length 2k from 2 letters EG

b **a** b **a** a a b a a b

Hence $W_2(2k) = \binom{2k}{k}$.

With
$$k = \frac{1}{2}$$
: $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

 $W_2(2k)$: abelian squares of length 2k from 2 letters babaa abaab

Hence $W_2(2k) = \binom{2k}{k}$.

With
$$k = \frac{1}{2}$$
: $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

THM Carlson

If f(z) is analytic for $Re(z) \ge 0$, "nice", and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \dots,$$

then f(z) = 0 identically.

 $W_2(2k)$: abelian squares of length 2k from 2 letters $b \ a \ b \ a \ a \ b \ a \ a \ b$

Hence
$$W_2(2k) = {2k \choose k}$$
.

With
$$k = \frac{1}{2}$$
: $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

THM Carlson

If f(z) is analytic for $\operatorname{Re}(z)\geqslant 0$, "nice", and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \dots,$$

then f(z) = 0 identically.

$$|f(z)| \leqslant Ae^{\alpha|z|}$$
, and $|f(iy)| \leqslant Be^{\beta|y|}$ for $\beta < \pi$

EG
$$W_2(2k)$$
: abelian squares of length $2k$ from 2 letters b a b a a b a a b

Hence
$$W_2(2k) = {2k \choose k}$$
.

With
$$k = \frac{1}{2}$$
: $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

THM Carlson

If
$$f(z)$$
 is analytic for $\operatorname{Re}(z)\geqslant 0$, "nice", and
$$f(0)=0,\quad f(1)=0,\quad f(2)=0,\quad \ldots,$$
 then $f(z)=0$ identically.

• $W_n(s)$ is nice!

$$|f(z)|\leqslant Ae^{\alpha|z|}\text{, and}$$

$$|f(iy)|\leqslant Be^{\beta|y|}\text{ for }\beta<\pi$$

EG
$$W_2(2k)$$
: abelian squares of length $2k$ from 2 letters b a b a a b a a b

Hence
$$W_2(2k) = {2k \choose k}$$
.

With
$$k = \frac{1}{2}$$
: $\binom{1}{1/2} = \frac{1!}{(1/2)!^2} = \frac{1}{\Gamma^2(3/2)} = \frac{4}{\pi}$

THM Carlson

If f(z) is analytic for $\operatorname{Re}(z) \geqslant 0$, "nice", and

$$f(0) = 0, \quad f(1) = 0, \quad f(2) = 0, \quad \dots,$$

then f(z) = 0 identically.

- $W_n(s)$ is nice!
- Indeed, $W_2(s) = \binom{s}{s/2}$.

$$|f(z)| \leqslant Ae^{\alpha|z|}$$
, and $|f(iy)| \leqslant Be^{\beta|y|}$ for $\beta < \pi$

$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = {}_{3}F_{2} \left({\frac{1}{2}, -k, -k \atop 1, 1} \middle| 4 \right)$$

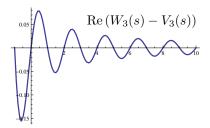
$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = {}_{3}F_{2} \left({\frac{1}{2}, -k, -k \atop 1, 1} \middle| 4 \right)$$

$$_{3}F_{2}\left(\begin{vmatrix} \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 1, 1 \end{vmatrix} 4\right) \approx 1.574597238 - 0.126026522i$$

EG

$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = \underbrace{{}_{3}F_{2} \left(\frac{\frac{1}{2}, -k, -k}{1, 1} \middle| 4 \right)}_{=:V_{3}(2k)}$$

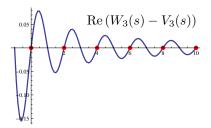
$$_{3}F_{2}\left(\begin{array}{c} \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 1, 1 \end{array} \middle| 4\right) \approx 1.574597238 - 0.126026522i$$



EG

$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = \underbrace{{}_{3}F_{2} \left(\frac{\frac{1}{2}, -k, -k}{1, 1} \middle| 4 \right)}_{=:V_{3}(2k)}$$

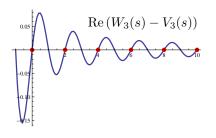
$$_{3}F_{2}\left(\begin{vmatrix} \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 1, 1 \end{vmatrix} 4\right) \approx 1.574597238 - 0.126026522i$$

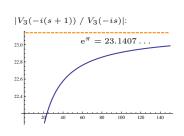


EG

$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = \underbrace{{}_{3}F_{2} \left(\frac{\frac{1}{2}, -k, -k}{1, 1} \middle| 4 \right)}_{=:V_{3}(2k)}$$

$$_{3}F_{2}\left(\begin{array}{c} \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2} \\ 1, 1 \end{array} \middle| 4\right) \approx 1.574597238 - 0.126026522i$$





$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = \underbrace{{}_{3}F_{2} \left(\frac{\frac{1}{2}, -k, -k}{1, 1} \middle| 4 \right)}_{=:V_{3}(2k)}$$

Borwein-Nuyens-S-Wan.

2010

THM For integers k,

$$W_3(k) = \text{Re } {}_3F_2\left(\begin{array}{c} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{array} \middle| 4\right).$$

$$W_3(2k) = \sum_{j=0}^{k} {k \choose j}^2 {2j \choose j} = \underbrace{{}_{3}F_{2} \left(\frac{\frac{1}{2}, -k, -k}{1, 1} \middle| 4\right)}_{=:V_{3}(2k)}$$

Borwein-Nuyens-S-Wan. 2010

THM For integers k,

$$W_3(k) = \text{Re } {}_3F_2\left(\begin{array}{c} \frac{1}{2}, -\frac{k}{2}, -\frac{k}{2} \\ 1, 1 \end{array} \middle| 4\right).$$

COR

$$W_3(1) = \frac{3}{16} \frac{2^{1/3}}{\pi^4} \Gamma^6 \left(\frac{1}{3}\right) + \frac{27}{4} \frac{2^{2/3}}{\pi^4} \Gamma^6 \left(\frac{2}{3}\right)$$
$$= 1.57459723755189...$$

• Using Meijer G-function representations and transformations:

$$\begin{split} W_4(-1) &= \frac{\pi}{4} \, {}_7F_6\left(\frac{\frac{5}{4}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{1}{4}, 1, 1, 1, 1, 1}\right| 1\right) \\ &= \frac{\pi}{4} \, {}_6F_5\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{1, 1, 1, 1, 1}\right| 1\right) + \frac{\pi}{64} \, {}_6F_5\left(\frac{\frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}}{2, 2, 2, 2, 2}\right| 1\right) \\ &= \frac{\pi}{4} \sum_{n=0}^{\infty} \frac{(4n+1)\binom{2n}{n}^6}{4^{6n}}. \end{split}$$

$$W_4(1) = \frac{3\pi}{4} {}_{7}F_{6} \begin{pmatrix} \frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{3}{4}, 2, 2, 2, 1, 1 \end{pmatrix} 1$$
$$- \frac{3\pi}{8} {}_{7}F_{6} \begin{pmatrix} \frac{7}{4}, \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{3}{4}, 2, 2, 2, 2, 1 \end{pmatrix} 1 .$$

We have no idea about the case of five steps.

A combinatorial convolution

From the interpretation as abelian squares:

$$W_{n+m}(2k) = \sum_{j=0}^{k} {k \choose j}^2 W_n(2j) W_m(2(k-j)).$$

A combinatorial convolution

From the interpretation as abelian squares:

$$W_{n+m}(2k) = \sum_{j=0}^{k} {k \choose j}^2 W_n(2j) W_m(2(k-j)).$$

CONJ For even n.

$$W_n(s) \stackrel{?}{=} \sum_{i=0}^{\infty} {\binom{s/2}{j}}^2 W_{n-1}(s-2j).$$

A combinatorial convolution

From the interpretation as abelian squares:

$$W_{n+m}(2k) = \sum_{j=0}^{k} {k \choose j}^2 W_n(2j) W_m(2(k-j)).$$

CONJ For even
$$n$$
,

$$W_n(s) \stackrel{?}{=} \sum_{j=0}^{\infty} {s/2 \choose j}^2 W_{n-1}(s-2j).$$

- True for even s
- True for n=2
- True for n=4 and integer s
- In general, proven up to some technical growth conditions

Complex moments

THM

$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2$$

Inevitable recursions

Table recursions
$$K \cdot f(k) = f(k+1)$$

$$[(k+2)^2 K^2 - (10k^2 + 30k + 23)K + 9(k+1)^2] \cdot W_3(2k) = 0$$

$$[(k+2)^3 K^2 - (2k+3)(10k^2 + 30k + 24)K + 64(k+1)^3] \cdot W_4(2k) = 0$$

Complex moments

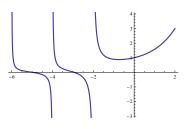
THM

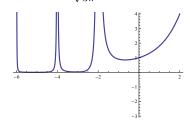
$$W_n(2k) = \sum_{a_1 + \dots + a_n = k} {k \choose a_1, \dots, a_n}^2$$

Inevitable recursions

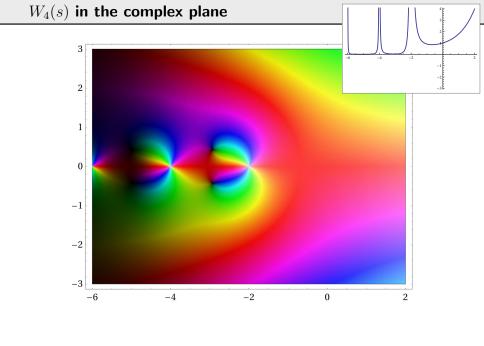
$$[(k+2)^{2}K^{2} - (10k^{2} + 30k + 23)K + 9(k+1)^{2}] \cdot W_{3}(2k) = 0$$
$$[(k+2)^{3}K^{2} - (2k+3)(10k^{2} + 30k + 24)K + 64(k+1)^{3}] \cdot W_{4}(2k) = 0$$

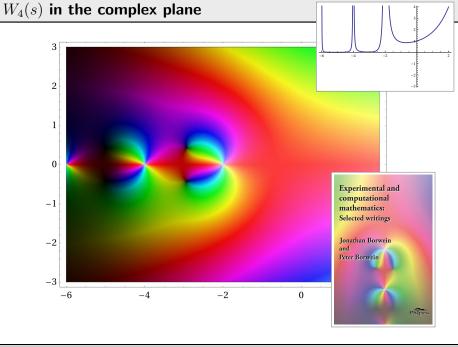
- Via Carlson's Theorem these become functional equations
- $W_3(s)$ has a simple pole at -2 with residue $\frac{2}{\sqrt{3}\pi}$; others at -2k.





 $K \cdot f(k) = f(k+1)$





Crashcourse on the Mellin transform

• Mellin transform
$$F(s)$$
 of $f(x)$:
$$\mathcal{M}\left[f;s\right] = \int_0^\infty x^s f(x) \frac{\mathrm{d}x}{x}$$

$$W_n(s-1) = \mathcal{M}[p_n; s]$$

Crashcourse on the Mellin transform

• Mellin transform F(s) of f(x):

$$\mathcal{M}[f;s] = \int_0^\infty x^s f(x) \frac{\mathrm{d}x}{x}$$

- F(s) is analytic in a strip
- Functional properties:
 - $\mathcal{M}[x^{\mu}f(x);s] = F(s+\mu)$
 - $\mathcal{M}[D_x f(x); s] = -(s-1)F(s-1)$
 - $\mathcal{M}[-\theta_x f(x); s] = sF(s)$

$$W_n(s-1) = \mathcal{M}[p_n; s]$$

Thus functional equations for F(s) translate into DEs for f(x)

Crashcourse on the Mellin transform

Mellin transform F(s) of f(x):

$$\mathcal{M}[f;s] = \int_0^\infty x^s f(x) \frac{\mathrm{d}x}{x}$$

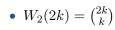
- F(s) is analytic in a strip
- Functional properties:
 - $\mathcal{M}[x^{\mu}f(x);s] = F(s+\mu)$
 - $\mathcal{M}[D_x f(x); s] = -(s-1)F(s-1)$
 - $\mathcal{M}[-\theta_x f(x); s] = sF(s)$
- Poles of F(s) left of strip

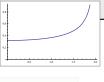
$$W_n(s-1) = \mathcal{M}[p_n; s]$$

Thus functional equations for F(s) translate into DEs for f(x)

asymptotics of f(x) at zero $\frac{(-1)^n}{1}x^m(\log x)^n$

Mellin approach illustrated for p_2

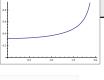




$$(s+2)W_2(s+2) - 4(s+1)W_2(s) = 0$$
$$[x^2(\theta_x + 1) - 4\theta_x] \cdot p_2(x) = 0$$

Mellin approach illustrated for p_2

• $W_2(2k) = \binom{2k}{k}$

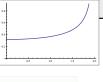


$$(s+2)W_2(s+2) - 4(s+1)W_2(s) = 0$$
$$[x^2(\theta_x + 1) - 4\theta_x] \cdot p_2(x) = 0$$

• Hence:
$$p_2(x) = \frac{C}{\sqrt{4-x^2}}$$

Mellin approach illustrated for p_2

•
$$W_2(2k) = {2k \choose k}$$



$$(s+2)W_2(s+2) - 4(s+1)W_2(s) = 0$$
$$[x^2(\theta_x + 1) - 4\theta_x] \cdot p_2(x) = 0$$

• Hence: $p_2(x) = \frac{C}{\sqrt{4-x^2}}$

$$W_2(s) = \frac{1}{\pi} \frac{1}{s+1} + O(1) \text{ as } s \to -1$$
 $p_2(x) = \frac{1}{\pi} + O(x) \text{ as } x \to 0^+$

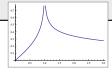
• Taken together: $p_2(x) = \frac{2}{\pi \sqrt{4-x^2}}$

p_3 in hypergeometric form

• $W_3(s)$ has simple poles at -2k-2 with residue

$$\frac{2}{\pi\sqrt{3}}\,\frac{W_3(2k)}{3^{2k}}$$

$$p_3(x) = \frac{2x}{\pi\sqrt{3}} \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3}\right)^{2k}$$



 $\text{for } 0\leqslant x\leqslant 1$

p_3 in hypergeometric form

• $W_3(s)$ has simple poles at -2k-2 with residue

$$\frac{2}{\pi\sqrt{3}}\,\frac{W_3(2k)}{3^{2k}}$$

$$p_3(x) = \frac{2x}{\pi\sqrt{3}} \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3}\right)^{2k}$$

for $0 \le x \le 1$

•
$$W_3(2k) = \sum_{j=0}^k {k \choose j}^2 {2j \choose j}$$
 is an **Apéry-like** sequence

p_3 in hypergeometric form

• $W_3(s)$ has simple poles at -2k-2 with residue

$$\frac{2}{\pi\sqrt{3}}\,\frac{W_3(2k)}{3^{2k}}$$

$$p_3(x) = \frac{2x}{\pi\sqrt{3}} \sum_{k=0}^{\infty} W_3(2k) \left(\frac{x}{3}\right)^{2k}$$

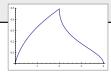
 $\text{ for } 0\leqslant x\leqslant 1$

• $W_3(2k) = \sum_{j=0}^k {k \choose j}^2 {2j \choose j}$ is an **Apéry-like** sequence

$$p_3(x) = \frac{2\sqrt{3}x}{\pi (3+x^2)} {}_{2}F_{1}\left(\frac{1}{3}, \frac{2}{3}; 1; \frac{x^2(9-x^2)^2}{(3+x^2)^3}\right)$$

- Easy to verify once found
- Holds for $0 \le x \le 3$

p_4 and its differential equation

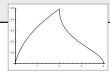


$$[(s+4)^3S^4 - 4(s+3)(5s^2 + 30s + 48)S^2 + 64(s+2)^3] \cdot W_4(s) = 0$$

translates into $A_4 \cdot p_4(x) = 0$ with

$$A_4 = x^4(\theta_x + 1)^3 - 4x^2\theta_x(5\theta_x^2 + 3) + 64(\theta_x - 1)^3$$

p_4 and its differential equation



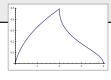
$$[(s+4)^3S^4 - 4(s+3)(5s^2 + 30s + 48)S^2 + 64(s+2)^3] \cdot W_4(s) = 0$$

translates into $A_4 \cdot p_4(x) = 0$ with

$$A_4 = x^4(\theta_x + 1)^3 - 4x^2\theta_x(5\theta_x^2 + 3) + 64(\theta_x - 1)^3$$

 $p_4(x) \approx C\sqrt{4-x}$ as $x \to 4^-$. Thus p_4'' is not locally integrable and does not have a Mellin transform in the classical sense.

p_4 and its differential equation



$$[(s+4)^3S^4 - 4(s+3)(5s^2 + 30s + 48)S^2 + 64(s+2)^3] \cdot W_4(s) = 0$$

translates into $A_4 \cdot p_4(x) = 0$ with

$$A_4 = x^4 (\theta_x + 1)^3 - 4x^2 \theta_x (5\theta_x^2 + 3) + 64(\theta_x - 1)^3$$

= $(x - 4)(x - 2)x^3 (x + 2)(x + 4)D_x^3 + 6x^4 (x^2 - 10) D_x^2$
+ $x (7x^4 - 32x^2 + 64) D_x + (x^2 - 8) (x^2 + 8)$

 $p_4(x) \approx C\sqrt{4-x}$ as $x \to 4^-$. Thus p_4'' is not locally integrable and does not have a Mellin transform in the classical sense.

Densities in general

- The density p_n satisfies a DE of order n-1.
- p_n is real analytic except at 0 and the integers $n, n-2, n-4, \ldots$

Densities in general

THM Borwein-S-Wan-Zudilin. 2011

- The density p_n satisfies a DE of order n-1.
- p_n is real analytic except at 0 and the integers $n, n-2, n-4, \ldots$

The second statement relies on an explicit recursion by Verrill (2004) as well as the combinatorial identity

$$\sum_{\substack{0 \leqslant m_1, \dots, m_j < n/2 \\ m_i < m_{i+1}}} \prod_{i=1}^j (n - 2m_i)^2 = \sum_{\substack{1 \leqslant \alpha_1, \dots, \alpha_j \leqslant n \\ \alpha_i \leqslant \alpha_{i+1} - 2}} \prod_{i=1}^j \alpha_i (n + 1 - \alpha_i).$$

First proven by Djakov-Mityagin (2004). Direct combinatorial proof by Zagier.

Densities in general

EG

$$\sum_{m=0}^{n/2-1} (n-2m)^2 = \sum_{\alpha=1}^n \alpha(n+1-\alpha) = \binom{n+2}{3}$$

$$\sum_{m_1=0}^{n/2-1} \sum_{m_2=0}^{m_1-1} (n-2m_1)^2 (n-2m_2)^2 = \sum_{\alpha_1=1}^n \sum_{\alpha_2=1}^{\alpha_1-2} \alpha_1 (n+1-\alpha_1) \alpha_2 (n+1-\alpha_2)$$

$$\sum_{\substack{0 \leqslant m_1, \dots, m_j < n/2 \\ m_i < m_{i+1}}} \prod_{i=1}^j (n-2m_i)^2 = \sum_{\substack{1 \leqslant \alpha_1, \dots, \alpha_j \leqslant n \\ \alpha_i \leqslant \alpha_{i+1}-2}} \prod_{i=1}^j \alpha_i (n+1-\alpha_i).$$

First proven by Djakov-Mityagin (2004).

Direct combinatorial proof by Zagier.

p_4 and its asymptotics at zero

$$W_4(s) = \frac{3}{2\pi^2} \frac{1}{(s+2)^2} + \frac{9\log 2}{2\pi^2} \frac{1}{s+2} + O(1) \quad \text{as } s \to -2$$
$$p_4(x) = -\frac{3}{2\pi^2} x \log(x) + \frac{9\log 2}{2\pi^2} x + O(x^3) \quad \text{as } x \to 0^+$$

• $W_4(s)$ has double poles:

$$W_4(s) = \frac{s_{4,k}}{(s+2k+2)^2} + \frac{r_{4,k}}{s+2k+2} + O(1)$$
 as $s \to -2k-2$

p_4 and its asymptotics at zero

$$W_4(s) = \frac{3}{2\pi^2} \frac{1}{(s+2)^2} + \frac{9\log 2}{2\pi^2} \frac{1}{s+2} + O(1) \quad \text{as } s \to -2$$
$$p_4(x) = -\frac{3}{2\pi^2} x \log(x) + \frac{9\log 2}{2\pi^2} x + O(x^3) \quad \text{as } x \to 0^+$$

• $W_4(s)$ has double poles:

$$W_4(s) = \frac{s_{4,k}}{(s+2k+2)^2} + \frac{r_{4,k}}{s+2k+2} + O(1) \quad \text{as } s \to -2k-2$$

$$p_4(x) = \sum_{k=0}^{\infty} (r_{4,k} - s_{4,k} \log(x)) \ x^{2k+1} \qquad \text{for small } x \geqslant 0$$

p_4 and its asymptotics at zero

$$W_4(s) = \frac{3}{2\pi^2} \frac{1}{(s+2)^2} + \frac{9\log 2}{2\pi^2} \frac{1}{s+2} + O(1) \quad \text{as } s \to -2$$
$$p_4(x) = -\frac{3}{2\pi^2} x \log(x) + \frac{9\log 2}{2\pi^2} x + O(x^3) \quad \text{as } x \to 0^+$$

• $W_4(s)$ has double poles:

$$W_4(s) = \frac{s_{4,k}}{(s+2k+2)^2} + \frac{r_{4,k}}{s+2k+2} + O(1) \quad \text{as } s \to -2k-2$$

$$p_4(x) = \sum_{k=0}^{\infty} (r_{4,k} - s_{4,k} \log(x)) \ x^{2k+1}$$
 for small $x \geqslant 0$

$$s_{4,k} = \frac{3}{2\pi^2} \frac{W_4(2k)}{8^{2k}} \qquad W_4(2k) = \sum_{j=0}^k \binom{k}{j}^2 \binom{2j}{j} \binom{2n-2j}{n-j}$$

$$r_{4,k} \text{ known recursively} \qquad \qquad \text{Domb numbers}$$

The Domb numbers

• $y_0(z) := \sum_{k\geqslant 0} W_4(2k) z^k$ is the analytic solution of

$$\left[64z^2(\theta+1)^3 - 2z(2\theta+1)(5\theta^2+5\theta+2) + \theta^3\right] \cdot y(z) = 0. \quad \text{(DE)}$$

• Let $y_1(z)$ solve (DE) and $y_1(z) - y_0(z) \log(z) \in z\mathbb{Q}[[z]]$. Then $p_4(x) = -\frac{3x}{4\pi^2} y_1(x^2/64)$.

The Domb numbers

• $y_0(z) := \sum_{k\geqslant 0} W_4(2k) z^k$ is the analytic solution of

$$\left[64z^2(\theta+1)^3 - 2z(2\theta+1)(5\theta^2+5\theta+2) + \theta^3\right] \cdot y(z) = 0. \quad \text{(DE)}$$

• Let $y_1(z)$ solve (DE) and $y_1(z) - y_0(z) \log(z) \in z\mathbb{Q}[[z]]$. Then $p_4(x) = -\frac{3x}{4\pi^2} \ y_1(x^2/64)$.

THM Generating function for Domb numbers:

Chan-Liu 2004; Rogers 2009

$$\sum_{k=0}^{\infty} W_4(2k)z^k = \frac{1}{1-4z} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \\ 1, 1 \end{array} \middle| \frac{108z^2}{(1-4z)^3}\right)$$

The Domb numbers

• $y_0(z) := \sum_{k\geqslant 0} W_4(2k)z^k$ is the analytic solution of

$$\left[64z^2(\theta+1)^3 - 2z(2\theta+1)(5\theta^2+5\theta+2) + \theta^3 \right] \cdot y(z) = 0. \quad \text{(DE)}$$

• Let $y_1(z)$ solve (DE) and $y_1(z) - y_0(z) \log(z) \in z\mathbb{Q}[[z]]$. Then $p_4(x) = -\frac{3x}{4\pi^2} y_1(x^2/64)$.

THM Generating function for Domb numbers:

Chan-Chan-Liu 2004; Rogers 2009

$$\sum_{k=0}^{\infty} W_4(2k)z^k = \frac{1}{1-4z} \, {}_{3}F_2\left(\begin{array}{c} \frac{1}{3}, \frac{1}{2}, \frac{2}{3} \\ 1, 1 \end{array} \middle| \frac{108z^2}{(1-4z)^3} \right)$$

• Basis at ∞ for the hypergeometric equation of ${}_3F_2\left(\left.\frac{\frac{1}{3},\frac{1}{2},\frac{z}{2}}{1,1}\right|t\right)$: [as $x\to 4$ then $z=\frac{x^2}{64}\to\frac{1}{4}$ and $t=\frac{108z^2}{(1-4z)^3}\to\infty$]

$$t^{-1/3} {}_3F_2 \left(\left. \frac{\frac{1}{3}, \frac{1}{3}, \frac{1}{3}}{\frac{2}{3}, \frac{5}{6}} \right| \frac{1}{t} \right), \quad t^{-1/2} {}_3F_2 \left(\left. \frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \right| \frac{1}{t} \right), \quad t^{-2/3} {}_3F_2 \left(\left. \frac{\frac{2}{3}, \frac{2}{3}, \frac{2}{3}}{\frac{4}{3}, \frac{7}{6}} \right| \frac{1}{t} \right)$$

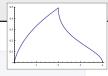
p_4 in hypergeometric form

THM For $2\leqslant x\leqslant 4$, Borwein-S-Wan-Zudilin 2011 $p_4(x)$

$$p_4(x) = \frac{2}{\pi^2} \frac{\sqrt{16 - x^2}}{x} {}_{3}F_{2} \left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \left| \frac{\left(16 - x^2\right)^3}{108x^4} \right).$$

• Easily (if tediously) provable once found

p_4 in hypergeometric form



THM Borwein-S-Wan-Zudilin 2011

THM For
$$2 \leqslant x \leqslant 4$$
,

$$p_4(x) = \frac{2}{\pi^2} \frac{\sqrt{16 - x^2}}{x} {}_3F_2\left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \\ \frac{5}{6}, \frac{7}{6} \end{array} \middle| \frac{\left(16 - x^2\right)^3}{108x^4} \right).$$

- Easily (if tediously) provable once found
- Quite marvelously, as first observed numerically:

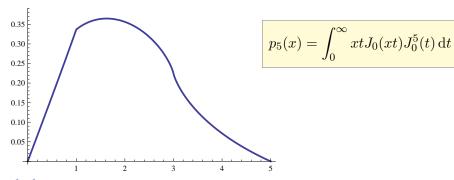
THM Borwein-S-Wan-Zudilin 2011

THM For
$$0 \leqslant x \leqslant 4$$
,

$$p_4(x) = \frac{2}{\pi^2} \, \frac{\sqrt{16 - x^2}}{x} \, \operatorname{Re} \, _3F_2 \left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \right| \frac{\left(16 - x^2\right)^3}{108 x^4} \right).$$

The density of a five-step random walk, again

$$p_5(x) = 0.32993 x + 0.0066167 x^3 + 0.00026233 x^5 + 0.000014119 x^7 + O(x^9)$$

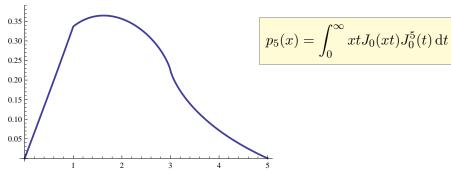


...the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line... Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J products to give extremely close approximations to such simple forms as horizontal lines.

Karl Pearson, 1906

The density of a five-step random walk, again

$$p_5(x) = \underbrace{0.32993}_{=p_4(1)} x + 0.0066167x^3 + 0.00026233x^5 + 0.000014119x^7 + O(x^9)$$



... the graphical construction, however carefully reinvestigated, did not permit of our considering the curve to be anything but a straight line... Even if it is not absolutely true, it exemplifies the extraordinary power of such integrals of J products to give extremely close approximations to such simple forms as horizontal lines.

Karl Pearson, 1906

THM Let $f(\tau)$ be a modular form and $x(\tau)$ a modular function w.r.t. Γ .

- Then y(x) defined by $f(\tau) = y(x(\tau))$ satisfies a linear DE.
- If $x(\tau)$ is a Hauptmodul for Γ , then the DE has polynomial coefficients.
- The solutions of the DE are $y(x), \tau y(x), \tau^2 y(x), \ldots$

THM Let $f(\tau)$ be a modular form and $x(\tau)$ a modular function w.r.t. Γ .

- Then y(x) defined by $f(\tau) = y(x(\tau))$ satisfies a linear DE.
- If $x(\tau)$ is a Hauptmodul for Γ , then the DE has polynomial coefficients.
- The solutions of the DE are $y(x), \tau y(x), \tau^2 y(x), \ldots$
- Dedekind eta function: $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, $q = e^{2\pi i \tau}$

EG Classic

$$_{2}F_{1}\left(\begin{array}{c|c} 1/2, 1/2 \\ 1 \end{array} \middle| \lambda(\tau)\right) = \theta_{3}(\tau)^{2}$$

- $\lambda(\tau)=16\frac{\eta(\tau/2)^8\eta(2\tau)^{16}}{\eta(\tau)^{24}}$ is the elliptic lambda function, a Hauptmodul for $\Gamma(2)$.
- $\theta_3(\tau) = \frac{\eta(\tau)^5}{\eta(\tau/2)^2 \eta(2\tau)^2}$ is the usual Jacobi theta function.

THM Let $f(\tau)$ be a modular form and $x(\tau)$ a modular function w.r.t. Γ .

- Then y(x) defined by $f(\tau) = y(x(\tau))$ satisfies a linear DE.
- If $x(\tau)$ is a Hauptmodul for Γ , then the DE has polynomial coefficients.
- The solutions of the DE are $y(x), \tau y(x), \tau^2 y(x), \ldots$
- Dedekind eta function: $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, $q = e^{2\pi i \tau}$

$$\begin{aligned} & \underset{\text{2004}}{\text{EG}} \\ & x(\tau) = -\left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)}\right)^6, \qquad f(\tau) = \frac{(\eta(\tau)\eta(3\tau))^4}{(\eta(2\tau)\eta(6\tau))^2} \\ & = -q - 6q^2 - 21q^3 - 68q^4 + \dots \\ & = 1 - 4q + 4q^2 - 4q^3 + 20q^4 + \dots \end{aligned}$$
 Here, $\Gamma = \left\langle \Gamma_0(6), \frac{1}{\sqrt{3}} \begin{pmatrix} 3 & -2 \\ 6 & -3 \end{pmatrix} \right\rangle.$

THM Let $f(\tau)$ be a modular form and $x(\tau)$ a modular function w.r.t. Γ .

- Then y(x) defined by $f(\tau) = y(x(\tau))$ satisfies a linear DE.
- If $x(\tau)$ is a Hauptmodul for Γ , then the DE has polynomial coefficients.
- The solutions of the DE are $y(x), \tau y(x), \tau^2 y(x), \ldots$
- Dedekind eta function: $\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n)$, $q = e^{2\pi i \tau}$

$$x(\tau) = -\left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)}\right)^6, \qquad f(\tau) = \frac{(\eta(\tau)\eta(3\tau))^4}{(\eta(2\tau)\eta(6\tau))^2} \\ = -q - 6q^2 - 21q^3 - 68q^4 + \dots \\ \text{Here, } \Gamma = \left\langle\Gamma_0(6), \frac{1}{\sqrt{3}} \begin{pmatrix} 3 - 2 \\ 6 - 3 \end{pmatrix}\right\rangle. \text{ Then, in a neighborhood of } i\infty.$$

$$f(\tau) = y_0(x(\tau)) = \sum_{k=0}^{\infty} W_4(2k)x(\tau)^k.$$

Modular parametrization of p_4

THM Borwein-S-Wan-Zudilin 2011

THM For $\tau = -1/2 + iy$ and y > 0:

$$p_4\left(\underbrace{8i\left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)}\right)^3}_{=\sqrt{64x(\tau)}}\right) = \underbrace{\frac{6(2\tau+1)}{\pi}}_{\pi} \underbrace{\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)}_{=\sqrt{-x(\tau)}f(\tau)}$$

Modular parametrization of p_4

THM Borwein-S-Wan-Zudilin 2011

THM For
$$\tau = -1/2 + iy$$
 and $y > 0$:

$$p_4\Bigg(\underbrace{8i\left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)}\right)^3}_{=\sqrt{64x(\tau)}}\Bigg) = \underbrace{\frac{6(2\tau+1)}{\pi}}_{\underline{\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)}}_{\underline{\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)}}$$

• When $\tau=-\frac{1}{2}+\frac{1}{6}\sqrt{-15}$, one obtains $p_4(1)=p_5'(0)$ as an η -product.

Modular parametrization of p_4

THM Borwein-S-Wan-Zudilin 2011

THM For $\tau = -1/2 + iy$ and y > 0:

$$p_4\Bigg(\underbrace{8i\left(\frac{\eta(2\tau)\eta(6\tau)}{\eta(\tau)\eta(3\tau)}\right)^3}_{=\sqrt{64x(\tau)}}\Bigg) = \underbrace{\frac{6(2\tau+1)}{\pi}}_{\underline{\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)}}_{\underline{\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)}}$$

- When $au=-rac{1}{2}+rac{1}{6}\sqrt{-15}$, one obtains $p_4(1)=p_5'(0)$ as an η -product.
- Applying the Chowla–Selberg formula, eventually leads to:

$$p_4(1) = p_5'(0) = \frac{\sqrt{5}}{40\pi^4} \Gamma(\frac{1}{15}) \Gamma(\frac{2}{15}) \Gamma(\frac{4}{15}) \Gamma(\frac{8}{15}) \approx 0.32993$$

Chowla—Selberg formula

THM Chowla-Selberg 1967

$$\prod_{j=1}^{h} a_j^{-6} |\eta(\tau_j)|^{24} = \frac{1}{(2\pi|d|)^{6h}} \left[\prod_{k=1}^{|d|} \Gamma\left(\frac{k}{|d|}\right)^{\left(\frac{d}{k}\right)} \right]^{3w}$$

where the product is over reduced binary quadratic forms $[a_j,b_j,c_j]$ of discriminant d<0. Further, $\tau_j=\frac{-b_j+\sqrt{d}}{2a_i}$.

Chowla-Selberg formula

THM Chowla-Selberg 1967

$$\prod_{j=1}^{h} a_j^{-6} |\eta(\tau_j)|^{24} = \frac{1}{(2\pi|d|)^{6h}} \left[\prod_{k=1}^{|d|} \Gamma\left(\frac{k}{|d|}\right)^{\left(\frac{d}{k}\right)} \right]^{3w}$$

where the product is over reduced binary quadratic forms $[a_j,b_j,c_j]$ of discriminant d<0. Further, $\tau_j=\frac{-b_j+\sqrt{d}}{2a_j}$.

EG

$$\mathbb{Q}(\sqrt{-15})$$
 has discriminant $\Delta=-15$ and class number $h=2$. $Q_1=[1,1,4]\,,\qquad Q_2=[2,1,2]$

with corresponding roots

$$\tau_1 = -\frac{1}{2} + \frac{1}{2}\sqrt{-15}, \qquad \tau_2 = \frac{1}{2}\tau_1.$$

$$\frac{1}{\sqrt{2}} |\eta(\tau_1)\eta(\tau_2)|^2 = \frac{1}{30\pi} \left(\frac{\Gamma(\frac{1}{15})\Gamma(\frac{2}{15})\Gamma(\frac{4}{15})\Gamma(\frac{8}{15})}{\Gamma(\frac{7}{15})\Gamma(\frac{11}{15})\Gamma(\frac{13}{15})\Gamma(\frac{14}{15})} \right)^{1/2}$$

$$= \frac{1}{120\pi^3} \Gamma(\frac{1}{15})\Gamma(\frac{2}{15})\Gamma(\frac{4}{15})\Gamma(\frac{8}{15})$$

Fact If $\sigma_1, \sigma_2 \in \mathcal{H}$ both belong to $\mathbb{Q}(\sqrt{-d})$, then the quotient $\eta\left(\sigma_{1}\right)/\eta\left(\sigma_{2}\right)$ is an algebraic number.

Fact If $\sigma_1, \sigma_2 \in \mathcal{H}$ both belong to $\mathbb{Q}(\sqrt{-d})$, then the quotient $\eta(\sigma_1)/\eta(\sigma_2)$ is an algebraic number.

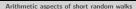
- We can write $\sigma_2 = M \cdot \sigma_1$ for some $M \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(\tau) = \frac{\eta(\tau)}{\eta(M \cdot \tau)}$ is a modular function.

Fact If $\sigma_1, \sigma_2 \in \mathcal{H}$ both belong to $\mathbb{Q}(\sqrt{-d})$, then the quotient $\eta(\sigma_1)/\eta(\sigma_2)$ is an algebraic number.

- We can write $\sigma_2 = M \cdot \sigma_1$ for some $M \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(\tau) = \frac{\eta(\tau)}{\eta(M \cdot \tau)}$ is a modular function.
- $\sigma_1 = N \cdot \sigma_1$ for some non-identity $N \in GL_2(\mathbb{Z})$.
- $f(N \cdot \tau)$ is another modular function.

Fact If $\sigma_1, \sigma_2 \in \mathcal{H}$ both belong to $\mathbb{Q}(\sqrt{-d})$, then the quotient $\eta(\sigma_1)/\eta(\sigma_2)$ is an algebraic number.

- We can write $\sigma_2 = M \cdot \sigma_1$ for some $M \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(\tau) = \frac{\eta(\tau)}{\eta(M \cdot \tau)}$ is a modular function.
- $\sigma_1 = N \cdot \sigma_1$ for some non-identity $N \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(N \cdot \tau)$ is another modular function.
- There is an algebraic relation $\Phi(f(\tau), f(N \cdot \tau)) = 0$.



Fact If $\sigma_1, \sigma_2 \in \mathcal{H}$ both belong to $\mathbb{Q}(\sqrt{-d})$, then the quotient $\eta(\sigma_1)/\eta(\sigma_2)$ is an algebraic number.

- We can write $\sigma_2 = M \cdot \sigma_1$ for some $M \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(\tau) = \frac{\eta(\tau)}{\eta(M \cdot \tau)}$ is a modular function.
- $\sigma_1 = N \cdot \sigma_1$ for some non-identity $N \in \mathsf{GL}_2(\mathbb{Z})$.
- $f(N \cdot \tau)$ is another modular function.
- There is an algebraic relation $\Phi(f(\tau),f(N\cdot\tau))=0.$
- Then: $\Phi(f(\sigma_1), f(\sigma_1)) = 0$

What we know about p_5

- $W_5(s)$ has simple poles at -2k-2 with residue $r_{5,k}$
- Hence: $p_5(x) = \sum_{k=0}^{\infty} r_{5,k} x^{2k+1}$

THM Surprising bonus of the modularity of p_4 :

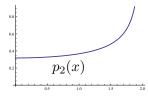
Borwein-S-Wan-Zudilin, 2011

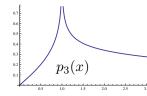
$$\begin{split} r_{5,0} &= p_4(1) = \frac{\sqrt{5}}{40} \frac{\Gamma(\frac{1}{15})\Gamma(\frac{2}{15})\Gamma(\frac{4}{15})\Gamma(\frac{8}{15})}{\pi^4} \\ r_{5,1} &\stackrel{?}{=} \frac{13}{225} r_{5,0} - \frac{2}{5\pi^4} \frac{1}{r_{5,0}} \end{split}$$

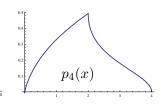
- Other residues given recursively
- p₅ solves the DE

$$\left[x^{6}(\theta+1)^{4} - x^{4}(35\theta^{4} + 42\theta^{2} + 3) + x^{2}(259(\theta-1)^{4} + 104(\theta-1)^{2}) - (15(\theta-3)(\theta-1))^{2}\right] \cdot p_{5}(x) = 0$$

Hypergeometric formulae summarized







$$p_2(x) = \frac{2}{\pi\sqrt{4 - x^2}}$$

$$p_3(x) = \frac{2\sqrt{3}}{\pi} \frac{x}{(3+x^2)} {}_{2}F_{1}\left(\frac{\frac{1}{3}, \frac{2}{3}}{1} \left| \frac{x^2 (9-x^2)^2}{(3+x^2)^3} \right) \right.$$

$$p_4(x) = \frac{2}{\pi^2} \frac{\sqrt{16 - x^2}}{x}$$

$$p_4(x) = \frac{2}{\pi^2} \frac{\sqrt{16 - x^2}}{x} \operatorname{Re} {}_{3}F_2\left(\frac{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}}{\frac{5}{6}, \frac{7}{6}} \middle| \frac{\left(16 - x^2\right)^3}{108x^4}\right)$$

Some problems

- Given a linear differential equation automatically find its "hypergeometric-type" solutions.
 Promising work by Mark van Hoeij and his group
- What is the average distance travelled in five steps?

$$W_n(1) = n \int_0^\infty J_1(x) J_0(x)^{n-1} \frac{dx}{x}$$

- What more can be said about p_5 ?
 - We know it satisfies a (non-modular) DE, as well as its expansion at zero.
 - Conjecture: $p_5'''(0) = \frac{78}{225}p_5'(0) \frac{12}{5\pi^4}\frac{1}{p_5'(0)}$
- Countless generalization ...
 - higher dimensions, different step sizes, ...

THANK YOU!

 Slides for this talk will be available from my website: http://arminstraub.com/talks

J. Borwein, A. Straub, J. Wan

Three-step and four-step random walk integrals Experimental Mathematics — to appear

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier) Densities of short uniform random walks Canadian Journal of Mathematics — to appear

. .

Mahler measure

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

Mahler measure

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

LEM Jensen

$$\int_0^1 \log \left| \alpha + e^{2\pi i t} \right| dt = \log \left(\max\{|\alpha|, 1\} \right)$$

Mahler measure

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

LEM Jensen

$$\int_0^1 \log \left| \alpha + e^{2\pi i t} \right| dt = \log \left(\max\{|\alpha|, 1\} \right)$$

Lehmer. 1931

CONJ If p(x) is not a product of cyclotomics then

$$\mu(p) \geqslant \mu(1 - x + x^3 - x^4 + x^5 - x^6 + x^7 - x^9 + x^{10}) = 0.162358.$$

Mahler measure

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

LEM Jensen

$$\int_0^1 \log \left| \alpha + e^{2\pi i t} \right| dt = \log \left(\max\{|\alpha|, 1\} \right)$$

CONJ Lehmer, 1931

CONJ If p(x) is not a product of cyclotomics then

$$\mu(p) \geqslant \mu(1 - x + x^3 - x^4 + x^5 - x^6 + x^7 - x^9 + x^{10}) = 0.162358.$$

EG Smyth, 1981

$$\mu(1+x+y) = \frac{1}{\pi} \operatorname{Cl}_2\left(\frac{\pi}{3}\right)$$
$$\mu(1+x+y+z) = \frac{7}{2} \frac{\zeta(3)}{\pi^2}$$

Mahler measure

DEF

(Logarithmic) Mahler measure of $p(x_1, \ldots, x_n)$:

$$\mu(p) := \int_0^1 \cdots \int_0^1 \log \left| p\left(e^{2\pi i t_1}, \dots, e^{2\pi i t_n}\right) \right| dt_1 dt_2 \dots dt_n$$

LEM Jensen

$$\int_0^1 \log \left| \alpha + e^{2\pi i t} \right| dt = \log \left(\max\{|\alpha|, 1\} \right)$$

Lehmer. 1931

CONJ If p(x) is not a product of cyclotomics then

$$\mu(p) \geqslant \mu(1-x+x^3-x^4+x^5-x^6+x^7-x^9+x^{10}) = 0.162358.$$

FG Smyth. 1981

$$\mu(1+x+y) = \frac{1}{\pi} \operatorname{Cl}_2\left(\frac{\pi}{3}\right) = W_3'(0)$$

$$\mu(1+x+y+z) = \frac{7}{2} \frac{\zeta(3)}{\pi^2} = W_4'(0)$$

•
$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi x_1 i} + \ldots + e^{2\pi x_n i} \right|^s d\mathbf{x}$$

• $W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$

•
$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

•
$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi x_1 i} + \ldots + e^{2\pi x_n i} \right|^s d\mathbf{x}$$

•
$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

EG Rogers-Zudilin, 2011

Typical conjecture (Deninger, 1997):

$$\mu(1+x+y+1/x+1/y) = \frac{15}{4\pi^2} L_E(2)$$

where ${\cal L}_E$ is the ${\cal L}$ -series for an elliptic curve of conductor 15.

•
$$W_n(s) = \int_{[0,1]^n} \left| e^{2\pi x_1 i} + \dots + e^{2\pi x_n i} \right|^s dx$$

•
$$W'_n(0) = \mu(x_1 + \ldots + x_n) = \mu(1 + x_1 + \ldots + x_{n-1})$$

EG Rogers-Zudilin, 2011

Typical conjecture (Deninger, 1997):

$$\mu(1+x+y+1/x+1/y) = \frac{15}{4\pi^2} L_E(2)$$

where L_E is the L-series for an elliptic curve of conductor 15.

CONJ Rodriguez-Villegas

$$W_5'(0) \stackrel{?}{=} \left(\frac{15}{4\pi^2}\right)^{5/2} \int_0^\infty \left[\eta^3(e^{-3t})\eta^3(e^{-5t}) + \eta^3(e^{-t})\eta^3(e^{-15t})\right] t^3 dt$$

CONJ Rodriguez Villegas

$$W_6'(0) \stackrel{?}{=} \left(\frac{3}{\pi^2}\right)^3 \int_0^\infty \eta^2(e^{-t})\eta^2(e^{-2t})\eta^2(e^{-3t})\eta^2(e^{-6t}) t^4 dt$$

• Representations for $W_n(s)$ give us, for instance,

$$W'_n(0) = \log(2) - \gamma - \int_0^1 (J_0^n(x) - 1) \frac{\mathrm{d}x}{x} - \int_1^\infty J_0^n(x) \frac{\mathrm{d}x}{x}$$
$$= \log(2) - \gamma - n \int_0^\infty \log(x) J_0^{n-1}(x) J_1(x) \mathrm{d}x.$$

(Multiple) Mahler measure

Multiple Mahler measure of polynomials $p_i(x_1, \ldots, x_n)$:

$$\mu(p_1, \dots, p_k) := \int_{[0,1]^n} \prod_{i=1}^k \log |p_i(e^{2\pi i t_1}, \dots, e^{2\pi i t_n})| d\mathbf{t}$$
$$\mu_k(p) := \int_{[0,1]^n} \log^k |p(e^{2\pi i t_1}, \dots, e^{2\pi i t_n})| d\mathbf{t}$$

(Multiple) Mahler measure

DEF Multiple Mahler measure of polynomials $p_i(x_1, \ldots, x_n)$:

$$\mu(p_1, \dots, p_k) := \int_{[0,1]^n} \prod_{i=1}^k \log |p_i(e^{2\pi i t_1}, \dots, e^{2\pi i t_n})| d\mathbf{t}$$

$$\mu_k(p) := \int_{[0,1]^n} \log^k |p(e^{2\pi i t_1}, \dots, e^{2\pi i t_n})| d\mathbf{t}$$

$$W_n^{(k)}(0) = \mu_k(1 + x_1 + \ldots + x_{n-1})$$

Moments of a 3-step random walk

EG S-Wan

$$\begin{split} & \underset{\text{S-Wan}}{\text{Borwein-Borwein-S-Wan}} \mu_1(1+x+y) = \frac{3}{2\pi} \operatorname{Ls}_2\left(\frac{2\pi}{3}\right) \\ & \mu_2(1+x+y) = \frac{3}{\pi} \operatorname{Ls}_3\left(\frac{2\pi}{3}\right) + \frac{\pi^2}{4} \\ & \mu_3(1+x+y) \stackrel{?}{=} \frac{6}{\pi} \operatorname{Ls}_4\left(\frac{2\pi}{3}\right) - \frac{9}{\pi} \operatorname{Cl}_4\left(\frac{\pi}{3}\right) \\ & - \frac{\pi}{4} \operatorname{Cl}_2\left(\frac{\pi}{3}\right) - \frac{13}{2} \zeta(3) \\ & \mu_4(1+x+y) \stackrel{?}{=} \frac{12}{\pi} \operatorname{Ls}_5\left(\frac{2\pi}{3}\right) - \frac{49}{3\pi} \operatorname{Ls}_5\left(\frac{\pi}{3}\right) + \frac{81}{\pi} \operatorname{Gl}_{4,1}\left(\frac{2\pi}{3}\right) \\ & + 3\pi \operatorname{Gl}_{2,1}\left(\frac{2\pi}{3}\right) + \frac{2}{\pi} \zeta(3) \operatorname{Cl}_2\left(\frac{\pi}{3}\right) \\ & + \operatorname{Cl}_2\left(\frac{\pi}{3}\right)^2 - \frac{29}{90} \pi^4 \end{split}$$

Derivatives of moments

• Using the residues $r_{5,k} = \operatorname{Res}_{-2k-2} W_5$:

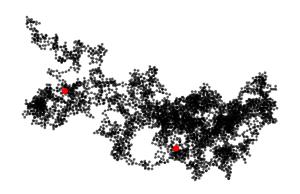
$$p_5(x) = \sum_{k=0}^{\infty} r_{5,k} x^{2k+1}$$

$$r_{5,0} = \frac{16 + 1140W_5'(0) - 804W_5'(2) + 64W_5'(4)}{225},$$

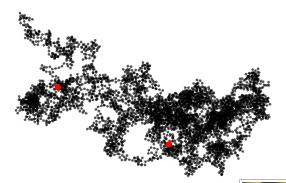
$$r_{5,1} = \frac{26r_{5,0} - 16 - 20W_5'(0) + 4W_5'(2)}{225}.$$

• Unfortunately, the Mahler measure $W_5'(0)$ "cancels" out.

Drunken birds



Drunken birds



A drunk man will find his way home, but a drunk bird may get lost forever. Shizuo Kakutani, 1911–2004

