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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

Wy (s)  sth moment
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Random walks

e n-step uniform planar random walk in the plane:

e n steps, each of length 1,
e taken in randomly chosen direction

Q What is the distance traveled in n steps?
pn(x)  probability density

Wy (s)  sth moment

EG 4
Wa(l) = —
T
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Random walks are only about 100 years old

e Karl Pearson asked for
pr(x) in Nature in 1905.

This famous question coined
the term random walk.

The Problem of the Random Walk,

Can any of your readers refer me to a work wherein
I should find a solution of the following problem, or fail-
ing the knowledge of any existing solution provide me
with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks I yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight-line. He
repeats this precess n times. I require the probability that
after these n stretches he is at a distance between 7 and
v+ 38y from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a solution ought to be
found, if only in the form of a series in powers of 1/,
when n is large. KarL PEARSON.

The Gables, East llsley, Berks.

Applications include:

e dispersion of mosquitoes

e random migration of
micro-organisms

e phenomenon of laser speckle
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Long random walks

THM 2x 2
Rayleigh, pn(z) = =@ /m for large n
1905 n
EG 0.06 -
Pp200 005F
0.04
0.03|
0.02
001
10 20 3‘0 40 50

The lesson of Lord Rayleigh’s solution is that in open
country the most probable place to find a drunken
man who is at all capable of keeping on his feet is
somewhere near his starting point!

Karl Pearson, 1905
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Densities of short walks
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Densities of short walks

b2 b3 P4
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The density of a five-step random walk

035
030f
0zsf S
020f ps(x) = / wtJo(xt)J5 () dt
F 0
015}
o10f
00sF
1 2 3 4 5
... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight
line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.
Karl Pearson, 1906
H. E. Fettis
On a conjecture of Karl Pearson
Rider Anniversary Volume, p. 39-54, 1963
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.lléoef)nnett

J. C. Kluyver
1906
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Classical results on the densities

easy

pulz) = /0 " ot do(et) J0 (1) dt

x))) G. J.llgo%nnett

J. C. Kluyver
1906

n=4,z=3/2
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An exact probability

THM The probability that a random walk is within one unit from its
origin after n steps is ...?7
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An exact probability

THM The probability that a random walk is within one unit from its
1

origin after n steps is ;=5.

Proof. The cumulative density function P, can be expressed as

IEa3)) = /OOO xJ1(xt)Jy(t) dt.

Then:
B JO(O)TL-H B 1

n+1 n+1

P(1)

e Recently: remarkably short proof by Olivier Bernardi
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO
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The average distance traveled in two steps

e The average distance in two steps:
1 pl ' '
Wa(1) = / / |2 4 ™| dady = ?
o Jo

1
:/0 14| dy
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The average distance

traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

1+ e2my)|
= |1 4 cos(27y) + isin(2my)|

= /2 + 2cos(27y)

= 2 cos(my)

1
:/0 14| dy

1
:/ 2 cos(my)dy
0
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

‘1+ezm'y| :/1|1+€2my‘dy
= |1 4 cos(27y) + isin(2my)| 01
= /2 + 2cos(2my) = / 2 cos(my)dy
= 2 cos(my) 40
= — = 1.27324
T
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

‘1+62ﬂ¢y| :/1’1+€zm‘y‘dy
= |1 4 cos(27y) + isin(2my)| 01
= /2 + 2cos(2my) = / 2 cos(my)dy
= 2 cos(my) 40
= — = 1.27324
T

e Mathematica 7 and Maple 14 think the double integral is 0.

Better: Mathematica 8 just does not evaluate the integral.
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The average distance traveled in two steps

e The average distance in two steps:

1 r1
Wz(l)—/ / |2 4 ™| dady = 7
0 JO

‘1+62ﬂ¢y| :/1’1+€zm‘y‘dy
= |1 4 cos(27y) + isin(2my)| 01
= /2 + 2cos(2my) = / 2 cos(my)dy
= 2 cos(my) 40
= — = 1.27324
T

e Mathematica 7 and Maple 14 think the double integral is 0.
Better: Mathematica 8 just does not evaluate the integral.

e This is the average length of a random arc on a
unit circle.
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / 2°pp(z) da = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

Armin Straub
10/ 35
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:

%

Ws(1) 1.57459723755189365749
Wi(1) 1.79909248
Ws(1) ~ 2.00816

%
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:
W3(1)
Wa(1)
Ws(1)

e On a supercomputer:

Ws(1)

%

1.57459723755189365749
1.79909248
2.00816

Lawrence Berkeley National Laboratory, 256 cores

2.0081618
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / °pp(x) do = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

e On a desktop:

W5(1) =~ 1.57459723755189365749
Wa(l) ~ 1.79909248
Ws(1) ~ 2.00816
° On a Supercomputer: Lawrence Berkeley National Laboratory, 256 cores
Ws(1) ~ 2.0081618

e Hard to evaluate numerically to high precision.
Monte-Carlo integration gives approximations with an asymptotic error of
O(1/v N) where N is the number of sample points.
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 37.25
1.575 | 3.000 | 6.452 | 15.00 36.71 | 93.00 | 241.5
1.799 | 4.000 | 10.12 | 28.00 82.65 | 256.0 822.3
2.008 | 5.000 | 14.29 | 45.00 | 152.3 | 545.0 | 2037.
2194 | 6.000 | 1891 | 66.00 | 248.8 | 996.0 | 4186.

S UL W NS
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

n

2 1.273 2.000 3.395 6.000 10.87 20.00 37.25

3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5

4 1.799 4.000 | 10.12 28.00 82.65 | 256.0 822.3

5 2.008 5.000 | 14.29 45.00 152.3 545.0 2037.

6 2.194 6.000 | 18.91 66.00 248.8 996.0 4186.
Wy(l) =2
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

s=1 s =2 s=3 s=4 s=25 s=06 s=17

n

2 | 1.273 | 2.000 | 3.395 | 6.000 | 10.87 | 20.00 | 37.25

3 |/1575| 3.000| 6452 |15.00 | 36.71 | 93.00 | 241.5

4 1.799\| 4.000 | 10.12 | 28.00 | 82.65 | 256.0 | 822.3

50 2.008\ 5.000|14.29 |45.00 | 152.3 | 545.0 | 2037.

6| 2.194 | 6.000 | 18.91 | 66.00 | 248.8 | 996.0 | 4186.
Wa(1) = 4 W3(1) = 1.57459723755189 . .. = ?
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Moments of random walks

DEF The sth moment W,,(s) of the density p,:

Wh(s) = / z°pn(x) de = / ‘627Ti$1 + ...+ 2 g
0 [0,1]"

n| s= s = s=3 s = s = s = s =

2 1.273 2.000 3.395 6.000 10.87 | 20.00 37.25

3 1.575 3.000 6.452 | 15.00 36.71 93.00 241.5

4 1.799\| 4.000 | 10.12 28.00 82.65 | 256.0 822.3

5 2.008 5.000 | 14.29 | 45.00 152.3 545.0 2037.

6 2.194 | 6.000 | 18.91 66.00 248.8 996.0 | 4186.
Wh(1) = % W5(1) = 1.57459723755189... =7
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Even moments

s = s=6|s=81] s=10 Sloane's

6 20 70 252 A000984
15 93 639 4653 A002893
28 256 | 2716 | 31504 A002895
45 545 | 7885 | 127905 A169714
66 996 | 18306 | 384156 A169715

[ U Sy )

S UL W NN

S UL W N3
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Even moments

n|ls=0|s=2]|s= s=6| s=81]s=10 Sloane’s
2 1 2 6 20 70 252 A000984
3 1 3 15 93 639 4653 A002893
4 1 4 28 256 2716 31504 A002895
5 1 5 45 545 | 7885 | 127905 A169714
6 1 6 66 996 | 18306 | 384156 A169715
EG k 2
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A combinatorial formula for the even moments

e sth moment W,,(s) of the density pj,:

Wy(s) = / ’627”“ + ...+ e2mian ‘S dx
[0,1]"

THM N

e Wy (2k) = E ( )
S-Wan a17' -'7an
2010 art-tan=~k

Armin Straub
12
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A combinatorial formula for the even moments

e sth moment W,,(s) of the density pj,:

Wy(s) = / ’627”“ 4. T ‘S dx
[0,1]”

THM 7 2

e Wy (2k) = E ( )
S-Wan ai,...,0n
2010 art-tan=~k

e W, (2k) counts the number of abelian squares: strings zy of length
2k from an alphabet with n letters such that y is a permutation of x.
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A combinatorial formula for the even moments

e sth moment W,,(s) of the density pj,:

Wy(s) = / ’627”“ + ...+ e2mian ‘S dx
[0,1]"

THM k 2
Borwein- W 2k — §
Nuyens- n( ) al’ . 7an

S-Wan
2010 art-tan=~k

e W, (2k) counts the number of abelian squares: strings zy of length
2k from an alphabet with n letters such that y is a permutation of x.

e Introduced by Erd6s and studied by others.

EG acbe cchba is an abelian square. It contributes to f3(4).

L. B. Richmond and J. Shallit
Counting abelian squares
The Electronic Journal of Combinatorics, Vol. 16, 2009.
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
babaa abaab
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
babaa abaabd

Hence W5 (2k) = (gkk)
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
babaa abaabd

Hence W5 (2k) = (gkk)

With k= 3: (17,) = Tz = o = =
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
abaabd

babaa
Hence W5 (2k) = (2:)

. (1 !
With k = 3: (I/Q)ZWZW_

Vv

THM If f(2) is analytic for Re (z) > 0
f0)=0, f(1)=0
then f(z) = 0 identically.
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters

babaa
Hence W5 (2k) = (2:)

- (1 !
With & = 3: (1/2) = (1/12)!2 = 733

THM If f(2) is analytic for Re (z) > 0
f0)=0, f(1)=0
then f(z) = 0 identically.

f(z)
fliy

abaabd

<A
)< B

"M and

BePll for B < 7
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
babaa abaabd

Hence W5 (2k) = (2:)
With & = 3: (1}2) = 1!)!2 = g = %

THM If f(z) is analytic for Re (z) >

0
f0)=0, f(1)=0, |f(2)=0, ...,
then f(z) = 0 identically.

o W,(s) is nice!
()] < AeF], and
|F(iy)| < B for 8 <
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Moments of a two-step walk

EG Wy (2k): abelian squares of length 2k from 2 letters
babaa abaabd

Hence W5 (2k) = (2:)
With & = 3: (1}2) = 1!)!2 = g = %

THM If f(z) is analytic for Re (z) >

0
f0)=0, f(1)=0, |f(2)=0, ...,
then f(z) = 0 identically.

o W,(s) is nice!

e Indeed, WQ(S) = (3/2)' (Z) a\z| and

1f(z)| <A
|f(iy)| < BePWl for B < 7
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Moments of a three-step walk

S ()
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Moments of a three-step walk
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Moments of a three-step walk

[Va(—i(s + 1)) / Va(—is)|:

e™ = 23.1407. ..
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Moments of a three-step walk

S ()

J=0
=:V3(2k)
THM For integers k,
?\Iorwein: l _E _E
S-Wan, Ws(k) =Res3Fy | 2 20 2]4].
2010 1,1
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Moments of a three-step walk

 men £ ) m (5

7=0
=:V3(2k)
THM For integers k,
e Lok ok
S-Wan, Ws(k) = Re 3F3 <2’ 22 4>.
2010 1,1
COR 91/3 1 97 92/3 9
() = S 20 (1) 4 2720 g 12
16 w4 3 4 7t 3

= 1.57459723755189.. ..

Armin Straub
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Moments of a four-step walk

e Using Meijer G-function representations and transformations:

Bora . 5111111
& o-En (i)
T 111111 - 333333
=G () e (s )
_mgn (n+ D)
4 = 46n :
mhe 31 7333111

e We have no idea about the case of five steps.
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A combinatorial convolution

e From the interpretation as abelian squares:

k

2
Wasm(@) = 3 (1) W2 W20t ).

J=0

Arithmetic aspects of short random walks Armin Straub

16 / 35



A combinatorial convolution

e From the interpretation as abelian squares:

k

2
Wasm(@) = 3 (1) W2 W20t ).

J=0

CONJ For even n,
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A combinatorial convolution

e From the interpretation as abelian squares:

k

2
Wasm(@) = 3 (1) W2 W20t ).

J=0

CONJ For even n,

True for even s

True forn =2

True for n = 4 and integer s

In general, proven up to some technical growth conditions
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Complex moments

THM Lk 2
Wn(Qk) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)
[(k+2)°K? — (10k? + 30k + 23) K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* + 30k + 24) K + 64(k + 1)°] - Wa(2k) = 0

Arithmetic aspects of short random walks Armin Straub
17 / 35




Complex moments

THM Lk 2
Wn(Qk) - Z <a1 ey Q >

e Inevitable recursions K- f(k) = f(k+1)
[(k+2)°K? — (10k? + 30k + 23) K + 9(k + 1)°] - W3(2k) = 0
[(k+2)°K? — (2k + 3)(10k* + 30k + 24) K + 64(k + 1)°] - Wa(2k) = 0
¢ Via Carlson’s Theorem these become functional equations
e Ws(s) has a simple pole at —2 with reS|due ; others at —2k.

AT

~
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Wy(s) in the complex plane ‘
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Wy(s) in the complex plane ‘

Experimental and
computational
mathematics:

Selected writings
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Crashcourse on the Mellin transform

o Melli fi s) of f(z): :
e ntransogF()Czle() Wy (s — 1) = M [pp; s]
M[f;s]—/o xsf(x);
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x): Wi(s — 1) = M [pn; ]
o s d$ n mny
./\/l[f;s]—/ z° f(x)—
0 x

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F(s) translate into DEs
o M[Dyf(x);s] =—(s—1)F(s— 1) for f(x)

o M[-0,f(x);s] =sF(s)
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Crashcourse on the Mellin transform

e Mellin transform F'(s) of f(x): Wi(s — 1) = M [pn; ]

Mifisl = [ ap@) S

0

e F(s) is analytic in a strip _ _

o Functional properties: Thus functional equations
o M[zhf(x);s] = F(s+ p) for F'(s) translate into DEs
o M[D,f(z);s] = —(s—1)F(s — 1) for f(x)

o M[=0.f(2);s] = sF(s)
e Poles of F(s) left of strip = asymptotics of f(z) at zero

W %xm(log z)"
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s+2) —4(s+ 1)Wa(s) =
[a:2 (0, +1)— 4096] “po(x) =

Arithmetic aspects of short random walks Armin Straub
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Mellin approach illustrated for p,

o Wa(2k) = (%)

(s +2)Wa(s +2) —4(s+ 1)Wa(s) =
[a:2 (0, +1)— 4096] “po(x) =

e Hence: pa(x)
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Mellin approach illustrated for p,

o Wa(2k) = (%)

k
(s +2)Wa(s +2) — 4(s + )Wa(s) = 0
[a:2 (0, +1)— 4096] “po(x) =0
e Hence: po(x) = 4€x2
Wa(s) = 71rs—1kl +0(1) as s - —1

1
po(x) = = +O(z) asz — 07"

2
T 4—x2

e Taken together: py(z) =

Arithmetic aspects of short random walks Armin Straub
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue

2 Ws(2k)
ﬂ\/g 32k
pa() = 22 5 Wi(2k) (2)% for 0 <z <1
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue

2 Ws(2k)
ﬂ\/g 32k
pa() = 22 5 Wi(2k) (2)% for 0 <z <1

o W3(2k) = Z?:o (];)2(2]3) is an Apéry-like sequence
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p3 in hypergeometric form

e Ws(s) has simple poles at —2k — 2 with residue

2 Wy(2k)
ﬂ\/g 32k

p3($) = Zk —0 W3(2k‘) (%) for0<x <1

o W3(2k) = Zf:o (?)2(2]3) is an Apéry-like sequence

23 12 . a2(9-2%)°
p3<$>—7r<:m2>2F1<33 ) <3+>>

e Easy to verify once found
e Holds for 0 < x < 3
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with

Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with

Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3

"opy(z)  CV4A—x asx — 47, Thus p) is not locally integrable

Care

needed gnd does not have a Mellin transform in the classical sense.
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ps and its differential equation

(s +4)*S" — 4(s + 3)(55 + 30s + 48)5* + 64(s + 2)°| - Wy(s) =0
translates into A4 - pa(x) = 0 with
Ay =2 (0, + 1) — 4220,(56 + 3) + 64(0, — 1)3

= (z —4)(z — 2)2*(z + 2)(z + 4) D3 + 62" (2* — 10) D2
+ 2 (72" — 3227 4+ 64) D, + (2° — 8) (27 + 8)

"opy(z) ~ CV4A—x asx — 47, Thus pf is not locally integrable

Care

needed gnd does not have a Mellin transform in the classical sense.
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Densities in general

THM e The density p, satisfies a DE of order n — 1.

Borwein-

swan- ® Dy is real analytic except at 0 and the integers
Zudilin,
2011 n,n—2,n—4,....
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Densities in general

e The density p,, satisfies a DE of order n — 1.

THM
Borwein- g 9 0
swan- ® Dy, is real analytic except at 0 and the integers
Zudilin,

n,n—2,n—4,....

2011

The second statement relies on an explicit recursion by Verrill (2004) as

well as the combinatorial identity

J J
Z H(H—sz‘)2 = Z Hai(n—i—l—ai).
1<aq,..a;<n =1

aigai+172

First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.

Armin Straub
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Densities in general

EG
n/2—1 n
n —2m)? = an—l—l—a:(n+2>

mz::O ( ) ; ( ) 3

n/2—1mq—1 n  a1—2

Z Z (n —2m1)%(n — 2my)? = Z Z at(n+1—ag)as(n+1— asg)

m1=0 mgo=0 a1=1az=1
J J

Z H(n—2mi)2 = Z Hai(n—i—l—ai).
o<my,..., mJ-<n/2 =1 1<ay ;... ajgn =1
mi<miiq a4 =2

First proven by Djakov-Mityagin (2004).
Direct combinatorial proof by Zagier.
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ps and its asymptotics at zero

EG 3 1 9log2 1
W, = — o1 =7
a(s) 2772(s+2)2+ 92 s—|—2+ (1) ass—
3 9log 2 3 4
pa(z) = —ﬁxlog(az) + 52 * +0(2°) asz—0
e Wa(s) has double poles:
Wy(s) = o4k SR — O(1) ass— —2k—2

(s+2k+2)?2 s+2k+2
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ps and its asymptotics at zero

EG 3 1 9log2 1
W, = = o1 =7
1) =5aGrae T om s T O s
3 9log 2
pa(z) = —ﬁazlog(az) + 2;% r+0(z®) asz—0"
e Wa(s) has double poles:
54,k T4,k
= ’ : 1 -2k -2
Wy(s) Grokt2? s+2k+2+0() as s — —2k
pa(x) = Z (rar — sS4 10g(x)) g2htl for small 2 >0

k=0
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ps and its asymptotics at zero

= W4<S>:23772(s+2)2 9;2%23i2+0(1) as s — —2
pa(z) = —%xlog(az) + 9;(;_%258 +0(3%) asz— 0"
e Wy(s) has double poles:
Wa(s) = G sz—l— 2 s +T;]’:+ 5+ O(1) ass— —2k—2

pa(x) = Z (rag — saxlog(z)) x2+1

k=0

©° 3 Wa(2Kk)

on2 g2k

T4,% known recursively

S4.k =

for small x > 0

k

K\ (25 [2n —2j
-5 () ()22
=0 J J n—7

Domb numbers

Arithmetic aspects of short random walks
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of
[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of

[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).

THM Generating function for Domb numbers:
Chan-

Chan-Liu > & 1 112
2004; Wi(2k)z" = (323
Rog:rs kZO 4( )Z 1—4z a2 ( 1, 1

2009

10822
(1-42)3
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The Domb numbers

o yo(2) := Y20 Wa(2k)zF is the analytic solution of
[6422(0 +1)° — 22(20 + 1)(56° + 50 + 2) + 6°] - y(z) = 0. (DE)

e Let y1(2) solve (DE) and y1(2) — yo(2) log(2) € 2Q[[z]].
Then py(z) = — 2% y1(2?/64).

THM Generating function for Domb numbers:
112

Chan- o0

Chan-Liu 1 %, = 10822
2004; Wa(2k)2* = Fy| 3223 —
2 Wulah)=" = 1= 2( 11 (1—4z)3>

11
e Basis at oo for the hypergeometric equation of 3F5 (5’5’

and t = (fﬂiijg — o]

. 7.’1:2 1
[as 2 — 4 then z = &7 — 3

1
1) , TR <
6

111
—1/3 313'3
=1/ 3F 323§3
36

Armin Straub 2
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p4 in hypergeometric form

THM For 2 <z <4,

Borwein-

S-Wan-
Zudilin 2 16 — z2
- SR

pale) =

e Easily (if tediously) provable once found

Armin Straub
26 /35
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p4 in hypergeometric form

THM For 2 < x <4,

Borwein-

S-Wan-

Zudilin 2 16 — z2
() = 5 R,

e Easily (if tediously) provable once found
e Quite marvelously, as first observed numerically:

THM For 0 < = < 4,

Borwein-

S-Wan-
Zudilin 2 /16 — z2 111
VBT pe o F (2 272

)=
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The density of a five-step random walk, again

ps(z) = 0.32993 2+0.00661672340.000262332° +0.00001411927 + O (2?)

030 ps(x) = /000 wtJo(xt)J5 () dt

025F

0.20F
0.15F
0.10}

0.05F

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906
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The density of a five-step random walk, again

ps(z) = 0.32993 2+0.0066167234-0.000262332° +0.00001411927 + O (2?)
=p4(1)

030 ps(x) = /000 wtJo(xt)J5 () dt

025F

0.20F
0.15F
0.10}

0.05F

1 2 3 4 5

... the graphical construction, however carefully reinvestigated, did not
permit of our considering the curve to be anything but a straight

line. .. Even if it is not absolutely true, it exemplifies the extraordinary power
of such integrals of J products to give extremely close approximations to
such simple forms as horizontal lines.

Karl Pearson, 1906
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.
e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.
o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.
e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e Dedekind eta function: n(7) = = ¢/ H (1—4") q = 2™

L] JF, (1/ 2’11/ Q)A(T)) — 03(r)?

e \(7) = 16% is the elliptic lambda function, a

Hauptmodul for I'(2).

o O5(1) = % is the usual Jacobi theta function.
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e Dedekind eta function: n(7) = = ¢/ H (1—4") q = 2™

e _ (n@n)n67)\° _ (n(m)n(3))*
ciiie 2(7) = (77(7)77(37)) - IO = a2

= —q—6¢%> —21¢°> —68¢* + ... = 1—4g+4¢% — 4¢° +20¢* + . ..

Here, T = (To(6), 5 (3 3) )
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Modular differential equations

THM Let f(7) be a modular form and z(7) a modular function w.r.t. T.

e Then y(x) defined by f(7) = y(z(7)) satisfies a linear DE.

o If z(7) is a Hauptmodul for T', then the DE has polynomial
coefficients.

e The solutions of the DE are y(z), 7y(z), 72y(x), . . ..

e Dedekind eta function: n(7) = = ¢/ H (1—4") q = 2™

e _ (n@n)n67)\° _ (n(m)n(3))*
ciiie 2(7) = (77(7)77(37)) - IO = a2

= —q—6¢%> —21¢°> —68¢* + ... = 1—4g+4¢% — 4¢° +20¢* + . ..

Here, F == <F0(6) \/g (g _.% )> Then, in a neighborhood of ico,
o

F(r) = yola(r) = Y Wa(2k)(r)"
k=0
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

Borwein-
S-Wan-

i p4( . (77(27)77(67) )3 ) _ @ n(r)n(2r)n(3)n(67)

n()n(37)
T =y/=a(N)f(r)

Arithmetic aspects of short random walks Armin Straub
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

(s (L)) ST g o a(arncon)
: ot =y —z(7)f(7)

e When 7= —1 + +1/—15, one obtains p4(1) = p5(0) as an n-product.
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Modular parametrization of p,

THM For 7 = —1/2+ 4y and y > O:

Borwein-

2 S (n@rn6n)\* _ 6(2r +1)
p(s (2] ) - S5 otarntante)
e =V~ f(7)

e When 7= —1 + +1/—15, one obtains p4(1) = p5(0) as an n-product.
o Applying the Chowla—Selberg formula, eventually leads to:

COR i _ \/B
4074

r(%)r(%)r(%)r(%) ~ 0.32993
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Chowla—Selberg formula

THM 3w
Chowla— h 6 24 1 Idl (%)
s(;l;;;;g H 5 ’77 T3 | (27T‘d| 6h H I (\d\)

where the product is over reduced blnary quadratic forms
—b]‘-i-\/a
=

laj, bj, cj] of discriminant d < 0. Further, 7; = — -
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Chowla—Selberg formula

THM 3w

Chowla— h 1 Idl

(%)
elber “Blp(r;)| = "
S1I9b67g H ’77 Tj | (27T‘d| 6h H r (‘d‘)

where the product is over reduced blnary quadratic forms
—b]'-i-\/a

2aj

[aj,bj, c;] of discriminant d < 0. Further, 7; =

EG  Q(v/—15) has discriminant A = —15 and class number h = 2.
Ql - [1)1)4]7 Q? = [271’2]

with corresponding roots

1 1./ 1
T = —5 + 5 —15, Ty = 57‘1.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(1)= T)T) is a modular function.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(r)= T)) is a modular function.
e 0 = N o1 for some non-identity N € GLy(Z).

e f(N -7) is another modular function.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f(r)= T)) is a modular function.

e 0 = N o1 for some non-identity N € GLy(Z).

e f(N -7) is another modular function.

e There is an algebraic relation ®(f(7), f(INV - 7)) = 0.
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Evaluating eta-quotients

Fact |f 51,00 € H both belong to Q(v/—d), then the quotient
1 (o1) /n (o2) is an algebraic number.

Proof. e We can write g9 = M - o1 for some M € GL2(Z)-

o f( )= T)) is a modular function.

® 0 = N o1 for some non-identity N € GLy(Z).

f(N - T) is another modular function.
e There is an algebraic relation ®(f(7), f(N - 7)) = 0.

Then: ®(f(01), f(o1)) =0
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What we know about p; =
e Ws(s) has simple poles at —2k — 2 with residue r5 j, &

e Hence: ps(z) =3 72 o 75k a2kl

THM Surprising bonus of the modularity of py:

Borwein-
S-Wan-

o rso = pa(1) = V5 T(5)L ()T (35)0(35)
>0 40 m
2 13 2 1
T = T _ —
517 995 %0 Bripgg

e Other residues given recursively
e ps solves the DE

[2%(0 + 1)* — (350" + 420% + 3) + 2(259(0 — 1)* + 104(0 — 1)?)
— (150 = 3)(0 — 1))* ] - ps(z) = 0

Arithmetic aspects of short random walks
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Hypergeometric formulae summarized

05

06 04

03

03 02

o p2() - p3() : pa(x)
(1) = ——
XrT) = —F/——— €as
b2 V4 — 22 Y
(z) 2V3 . %’% 7582 (9 — x2)2 classical
)= —— i
ps ™ (3 + $2)2 ! 1 (3 + .’,12‘2)3 with a spin
2 V16 — 22 111116 —a2)°
=Y < R F 1272
pale) =5 = 3 ( 5.1 |7 10844 BSWZ
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Some problems

e Given a linear differential equation automatically find its
“hypergeometric-type” solutions.
Promising work by Mark van Hoeij and his group

o What is the average distance travelled in five steps?
H/,, —-n ]() Jl JO( )n 1dz

xT
° What more can be said about p5?
We know it satisfies a (non-modular) DE, as well as its expansion at zero.
78 12 1
Conjecture: p5’(0) = 55:p5(0) — =5 O]
e Countless generalization ...
higher dimensions, different step sizes, ...

Arithmetic aspects of short random walks Armin Straub
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THANK YOQU!

e Slides for this talk will be available from my website:
http://arminstraub.com/talks

J. Borwein, D. Nuyens, A. Straub, J. Wan
Some arithmetic properties of short random walk integrals
The Ramanujan Journal, Vol. 26, Nr. 1, 2011, p. 109-132

J. Borwein, A. Straub, J. Wan
Three-step and four-step random walk integrals
Experimental Mathematics — to appear

J. Borwein, A. Straub, J. Wan, W. Zudilin (appendix by D. Zagier)
Densities of short uniform random walks
Canadian Journal of Mathematics — to appear
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Mahler measure

DEF (Logarithmic) Mahler measure of p(x1,...,z,):

/ / log |p (€™, ..., e*™)| dtydty ... dty
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Mahler measure

DEF (Logarithmic) Mahler measure of p(x1,...,z,):

/ / log |p (€™, ..., e*™)| dtydty ... dty

1
/ log ‘a + 62“”‘ dt = log (max{|«/|,1})
0

LEM

Jensen
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Mahler measure

DEF (Logarithmic) Mahler measure of p(x1,...,z,):

/ / log |p (€™, ..., e*™)| dtydty ... dty

1
/ log ‘a + 62“”‘ dt = log (max{|«/|,1})
0

LEM

Jensen

CONJ If p(z) is not a product of cyclotomics then

Lehmer,
1931

pp) = p(l—z+z3—2t+2° — 25+ 27— 2%+ 210) = 0.162358.
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Mahler measure

DEF (Logarithmic) Mahler measure of p(x1,...,z,):

/ / log |p (€™, ..., e*™)| dtydty ... dty

1
/ log ‘a + 62“”‘ dt = log (max{|«/|,1})
0

LEM

Jensen

CONJ If p(z) is not a product of cyclotomics then

Lehmer,
1931

EG 1 T
S p(l+z+y) = ;012 (g)
7¢(3

pp) = p(l—z+z3—2t+2° — 25+ 27— 2%+ 210) = 0.162358.
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Mahler measure

DEF (Logarithmic) Mahler measure of p(x1,...,z,):

/ / log |p (€™, ..., e*™)| dtydty ... dty

1
/ log ‘a + 62“”‘ dt = log (max{|«/|,1})
0

LEM

Jensen

CONJ If p(z) is not a product of cyclotomics then

Lehmer,
1931

EG 1 m
Sl pl+z+y) = —Cl (g) = Ws(0)
7C(3

pp) = p(l—z+z3—2t+2° — 25+ 27— 2%+ 210) = 0.162358.
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Mahler measure and random walks

o Wy(s) :/ 2™ 4 4 2™ da
[0,1]"

e W/(0)=p(z1+...4+an)=p(l+z1+...+2p-1)
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Mahler measure and random walks

o Wy(s) = / 2™ 4 4 2™ da
[0,1]"
e W/(0)=p(z1+...4+an)=p(l+z1+...+2p-1)

EG Typical conjecture (Deninger, 1997):

Rog‘?f: 15
Zuiin, pt+z+y+1/z+1/y) = =Le(2)

where Lg is the L-series for an elliptic curve of conductor 15.
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Mahler measure and random walks

o Wy(s) = / 2™ 4 4 2™ da
[0,1]"
e W/(0)=p(z1+...4+an)=p(l+z1+...+2p-1)

EG Typical conjecture (Deninger, 1997):

Rogers—

Zuiin, pt+z+y+1/z+1/y) = =Le(2)

where Lg is the L-series for an elliptic curve of conductor 15.

CONJ 5/2 o0
. 15
w w0L(m) [ Rete)
T
0 + n3(€7t),’73(6*15t)j| t3 dt

CONJ , /3\3 [oo
Rodriguez- W/ 0 = = ,,72 e—t 772 €—2t 772 e—3t 7,]2 e—Gt) t4 dt
6 w2 0

Villegas
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Mahler measure and random walks

¢ Representations for W, (s) give us, for instance,

! x o x
W) =1os2) =7~ [ @ -1F - [ @

T

=log(2) —y—n /000 log(x)Jo— () J1 (z)dz.
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(Multiple) Mahler measure

DEF Multiple Mahler measure of ponnomiaIs TRy < o 0 o 35

M(pla”-vpk /[\ - Hlog }p 27”t1 '~‘762ﬂ-itn)|dt
0,1

pi(p) == /[0 . log" p (™., egmt")‘ dt
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(Multiple) Mahler measure

DEF Multiple Mahler measure of ponnomiaIs TRy < o 0 o 35

p(p1s -5 PE) / Hlog |pi ( (e?mh ...,eQﬂtn)|dt
[0,1]”

pi(p) == /[0 . log" p (™., e%it")‘ dt

EG
W (0) = pp(l+ 21 4 ... 4+ Tp_1)
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Moments of a 3-step random walk

EG 3 2
Borwein- 1 = —1L -
oo 1Y) = o SZ(B)

3 2T 72
po(l+x +y) = — Lss <> + —
T 3

4
2 6 2 9 T
1 =—L — | —=Cly (=
Hs(l+z+y) T S4<3) 7TC4<3)

“ron(3)- B

7 12 2m 49 T 81 2
1 =l () -2 (f) 2 @l ([ 22
,LL4( +:c+y) - S5(3> 3 S5 3 +7TG4’1(3>
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Derivatives of moments

e Using the residues r5 ;, = Res_g;_2 Ws:

o.9]
ps(x) = Z 75,k p?
k=0

EG 16 + 11400 (0) — 804TW(2) + 64TV (4)
50 = 225 ’
26750 — 16 — 204 (0) + 4WL(2)
= 225 ’

e Unfortunately, the Mahler measure W/(0) “cancels” out.
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Drunken birds
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Drunken birds

A drunk man will find his way home,
but a drunk bird may get lost forever.
Shizuo Kakutani, 1911-2004
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