
On formulas for π experimentally conjectured by
Jauregui–Tsallis

To the fine memories of Herbert Wilf (6/13/1931–1/7/2012)

Tewodros Amdeberhan∗, David Borwein†,
Jonathan M. Borwein‡, and Armin Straub§

May 31, 2012

Abstract

In a recent study of representing Dirac’s delta distribution using q-exponentials,
M. Jauregui and C. Tsallis experimentally discovered formulae for π as hyper-
geometric series as well as certain integrals. Herein, we offer rigorous proofs of
these identities using various methods and our primary intent is to lay down an
illustration of the many technical underpinnings of such evaluations. This in-
cludes an explicit discussion of creative telescoping and Carlson’s Theorem. We
also generalize the Jauregui–Tsallis identities to integrals involving Chebyshev
polynomials. In our pursuit, we provide an interesting tour through various
topics from classical analysis to the theory of special functions.

∗Tulane University, New Orleans, USA. Email: tamdeber@tulane.edu.
†Department of Mathematics, University of Western Ontario, London, ON, Canada. Email:

dborwein@uwo.ca.
‡Centre for Computer-assisted Research Mathematics and its Applications (CARMA), School

of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.
Email: jonathan.borwein@newcastle.edu.au, jborwein@gmail.com. Supported in part by the
Australian Research Council and the University of Newcastle. Distinguished Professor King Abdu-
laziz University, Jeddah.
§Tulane University, New Orleans, USA. Email: astraub@tulane.edu.

1



1 Introduction

In exploring applications of the q-exponential function and formal representations of
the Dirac function, Jauregui and Tsallis conjectured [6] that

T (r) :=

∫ ∞
−∞

sin(2r arctan(t))

t(1 + t2)r
dt = π (1)

for all r > 0. When r is a half-integer, they rewrite (1) as the finite sum

S(n) := n

bn−1
2
c∑

k=0

(−1)k
Γ(n− k − 1

2
)Γ(k + 1

2
)

Γ(2k + 2)Γ(n− 2k)
= π (2)

which they confirmed, up to n = 5000, by a symbolic algebra system. The connection
S(n) = T (n/2) is given in Section 2.4.

In the present work, we show the validity of the Jauregui–Tsallis conjecture (1)
— along with the special case (2) — and present natural generalizations of these
identities. Earlier proofs of these conjectures, in the more general (physical) setting
of [6], appear in [4], by recourse to the notion of superstatistics, and in [10], by
appealing to the theory of tempered ultradistributions. In offering several proofs of
(1) and (2), the primary intent of the present work is to lay down an illustration
of the many technical underpinnings of such integral evaluations. In particular, we
hope that the explicit discussion of creative telescoping and Carlson’s Theorem —
which, we believe, deserve to be better known — is useful to the reader.

The paper is organized as follows. Section 2 is devoted to the proof of the above
conjectures: in Section 2.1 we deduce the special case (2) from the classical Pfaff–
Saalschütz identity of hypergeometric function theory and give a short proof of (1)
when r is a half-integer (that is, 2r is an integer) using complex analysis in Section
2.2. Section 2.3 lifts this result to complex r with the help of Carlson’s theorem on
discrete analytic continuation. The relation between (1) and (2) is shown in Section
2.4 with an added illustration of Carlson’s theorem and a cautionary example that,
despite its success on (1), exhibits failure of application in the case of (2). In Section
3 we provide an entirely different computer algebra proof of (2) and the half-integer
case of (1) via the method of creative telescoping [9]. Finally, in Sections 4 and
5 we revisit and then generalize our earlier results in the language of orthogonal
polynomials. This actually has its bases on the following observations.

The integral in (1) has several equivalent representations highlighting its different
aspects. The change of variables t = tan(θ) shows that

T (r) =

∫ π/2

−π/2

sin(2rθ)

sin(θ)
cos2r−1(θ) dθ. (3)
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Let Un denote the Chebyshev polynomial of the second kind, given by

Un(cos(θ)) =
sin((n+ 1)θ)

sin(θ)
. (4)

For positive integers n,

T (n+1
2

) = 2

∫ 1

0

xnUn(x)
dx√

1− x2
. (5)

Motivated by a corresponding identity, given in (35), for the Chebyshev polynomial
Tn of the first kind, we generalize our considerations (see Section 4) to the integral

MU(n, s) :=

∫ 1

0

xs−1Un(x)
dx√

1− x2
. (6)

Our main result will be the evaluation, proven in Theorem 4.11,

MU(n, s) =
π

2s

(
s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)
− π

2
,

valid for complex n and Re s > 0, which has the Jauregui–Tsallis evaluation (1) as
a direct consequence.

2 The Jauregui–Tsallis conjectures

2.1 The sum

Recall that the (generalized) hypergeometric function is defined by

pFq

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣z) =
∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

zn

n!
(7)

for |z| < 1 (assuming p 6 q + 1), and by analytic continuation elsewhere. Here
(a)n := a(a+ 1) · · · (a+ n− 1) = Γ(a+ n)/Γ(a) is the rising factorial.

We need the following classical theorem given, for instance, in [2, Thm. 2.2.6]:

Theorem 2.1 (Pfaff–Saalschütz). For n = 1, 2, 3, . . . one has

3F2

(
a, b,−n

1 + a+ b− c− n, c

∣∣∣∣1) =
(c− a)n(c− b)n
(c)n(c− a− b)n

. (8)
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Letting n increase to infinity recovers Gauss’s formula

2F1

(
a, b

c

∣∣∣∣1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(9)

valid when Re (c− a− b) > 0.
We now turn the Jauregui–Tsallis conjecture (2) into a theorem.

Theorem 2.2. For n = 1, 2, 3, . . . one has

S(n) = n

∞∑
k=0

(−1)k
Γ(n− k − 1

2
)Γ(k + 1

2
)

Γ(2k + 2)Γ(n− 2k)
= π. (10)

Proof. For the first equality we only need to observe that every term in the sum with
k > (n− 1)/2 vanishes. Now, using the Legendre duplication formula

Γ(z)Γ
(
z + 1

2

)
22z−1 = Γ(2z)

√
π

in (10), it is easily seen that proving S(n) = π is equivalent to showing

3F2

( 1
2
,−n

2
+ 1,−n

2
+ 1

2
3
2
,−n+ 3

2

∣∣∣∣1) =
Γ(n)
√
π

nΓ
(
n− 1

2

) . (11)

We shall apply Theorem 2.1 to (11) separately for even and odd n.
Suppose that n = 2m+ 2 is even. Then the left-hand side of (11) is

3F2

( 1
2
,−m− 1

2
,−m

3
2
,−2m− 1

2

∣∣∣∣1)
which by Theorem 2.1, with a = 1

2
, b = −m− 1

2
and c = 3

2
, evaluates to the right-hand

side of (11).
The case when n = 2m+ 1 is odd follows analogously.

2.2 The integral – half-integer case

We embark on proving the Jauregui–Tsallis conjecture (1) for half-integers r. In
Section 2.3 this will be extended to the analytic case, thus validating the conjecture
for all complex Re r > 0.

Theorem 2.3. For positive half-integers r one has

T (r) =

∫ π/2

−π/2

sin(2rθ)

sin(θ)
cos2r−1(θ) dθ = π. (12)
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Proof. Writing z = e2iθ in (12) we have

T (r) =
1

22r−1

∫ π/2

−π/2

z2r − 1

z − 1

(z + 1)2r−1

z2r−1
dθ =

π

22r−1 ·
1

2πi

∮
z2r − 1

z − 1

(z + 1)2r−1

z2r
dz

where the last integral is a contour integral along the positively oriented unit circle.
Hence, by the residue theorem

T (r) =
π

22r−1 ·
[
z2r−1

](z2r − 1

z − 1
(z + 1)2r−1

)
.

Here, [zn] f(z) denotes the coefficient of zn in the Taylor expansion of f(z). Assume
that r is a half-integer. Since the coefficient zn in

zn+1 − 1

z − 1
(z + 1)n = (1 + z + . . .+ zn) (1 + z)n

is
∑

k

(
n
k

)
= 2n we find T (r) = π, as claimed.

2.3 The analytic case

In the previous section, we have shown that T (r) = π for all positive half-integers
r. We now extend this result to all complex Re r > 0. To do so, appeal is made to
a classical result due to Fritz D. Carlson (from his 1914 dissertation [3]). The first
published proof was given in [12, §5.81]. An accessible proof of a special case, due
to Selberg, is presented in [2, p. 112].

We recall that a function f is of exponential type in a region if |f(z)| 6 Mec|z|

for some constants M and c.

Theorem 2.4 (Carlson). Let f be analytic in the right half-plane Re z > 0 and of
exponential type with the additional requirement that

|f(z)| 6Med|z|

for some d < π on the imaginary axis Re z = 0. If f(k) = 0 for k = 0, 1, 2, . . . then
f(z) = 0 identically in the right half-plane.

Note that the example f(z) = sin(πz) shows that the growth condition on the
imaginary axis can not be relaxed.

To establish analyticity, we use the following criterion discussed in [7]. As it is
very convenient yet not commonly found in textbooks, we include a specialization of
it here.
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Theorem 2.5 (Analyticity). Let G ⊂ C, W ⊂ R be open, and let f : G ×W → C
be a function such that f(z, ·) is Lebesgue measurable for all z ∈ G, and f(·, w) is
analytic for all w ∈ W . If for each z0 ∈ G there is a δ > 0 such that

sup
z∈G, |z−z0|<δ

∫
W

|f(z, w)| dw <∞, (13)

which is a local boundedness requirement, then
∫
W
f(·, w) dw is analytic in G.

Proposition 2.6. The integral

T (r) =

∫ π/2

−π/2

sin(2rθ)

sin(θ)
cos2r−1(θ) dθ (14)

is analytic on the half-plane Re r > 0. Moreover, let ε > 0. Then, for all Re r > ε,

|T (r)| 6 C|r| eπ| Im r| (15)

for some constant C = C(ε).

Proof. The following estimate is valid for all complex r:

| sin(2rθ)| 6 1

2

(
|e2irθ|+ |e−2irθ|

)
6 e2θ| Im r| 6 eπ| Im r|; (16)

where in the last step we assumed |θ| 6 π/2. Therefore, if additionally |θ| > 1/|r|,
then ∣∣∣∣sin(2rθ)

sin(θ)

∣∣∣∣ 6 eπ| Im r|

| sin(θ)|
6
π

2
|r| eπ| Im r|. (17)

On the other hand, assuming instead |rθ| < 1,∣∣∣∣sin(2rθ)

sin(θ)

∣∣∣∣ = 2|r|
∣∣∣∣sin(2rθ)

2rθ

∣∣∣∣ ∣∣∣∣ θ

sin(θ)

∣∣∣∣ 6 π|r|
∣∣∣∣sin(2rθ)

2rθ

∣∣∣∣ 6 C1π|r| (18)

with C1 = max|x|=2
sin(x)
x

= sinh(2)/2. Combining (17) and (18) we find, for Re r > ε,

|T (r)| 6 C2|r| eπ| Im r|
∫ π/2

−π/2
| cos2r−1(θ)| dθ

= C2|r| eπ| Im r| 1

2
B(Re r, 1

2
)

< C2|r| eπ| Im r| 1

2
B(ε, 1

2
). (19)

It follows from (19) that the local boundedness condition and all other conditions
of Theorem 2.5, with W = (−π/2, π/2), are satisfied. Hence T (r) is analytic for
Re r > 0. The estimate (15) is a consequence of (19).
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The stage is set to prove the Jauregui–Tsallis conjecture (1) in its full generality.

Theorem 2.7. For Re r > 0 one has

T (r) =

∫ ∞
−∞

sin (2r arctan(t))

t(1 + t2)r
dt = π. (20)

Proof. We have shown that T (r) = π for all positive half-integers r. Put f(z) =
T ( z+1

2
) − π so that f(0) = f(1) = . . . = 0. Then, by Proposition 2.6, the function

f(z) is analytic for Re z > −1/2 and satisfies

f(z) 6 Cf |z + 1| e
π
2
| Im z| (21)

for some constant Cf . In particular, f meets the assumptions of Carlson’s Theorem
2.4 for any d > π

2
. Therefore f(z) = 0, identically, in the right half-plane. This shows

T (r) = π for all Re r > 1/2, and the extension to Re r > 0 results from analytic
continuation.

2.4 Revisiting the sum

Recall first that

B(a, b) :=

∫ 1

0

ta−1(1− t)b−1 dt =
Γ(a)Γ(b)

Γ(a+ b)

is the Euler beta function.
Using the representation (3), Theorem 2.7 shows that

T (r) =

∫ π/2

−π/2

sin(2rθ)

sin(θ)
cos2r−1(θ) dθ = π (22)

for all Re r > 0 (this integral, as observed in [4], appears as Entry 3.638.3 in [5]). In
particular, when n = 2r is a positive integer, we have

T (n
2
) = 2

∫ π/2

0

Im (einθ)

sin(θ)
cosn−1(θ) dθ

= 2
∞∑
k=0

(−1)k
(

n

2k + 1

)∫ π/2

0

(cos θ)2n−2 k−2 (sin θ)2 k dθ

=
∞∑
k=0

(−1)k
(

n

2k + 1

)
B

(
n− k − 1

2
, k +

1

2

)
= n

∞∑
k=0

(−1)kΓ
(
n− k − 1

2

)
Γ
(
k + 1

2

)
Γ (2k + 2) Γ (n− 2k)

= S(n). (23)
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Thus the sum S(n), introduced in (2), is a special case of the integral T (r). At the
same time, Theorem 2.7 recovers the evaluation S(n) = π for n = 1, 2, 3 . . . which
we initially proved in Theorem 2.2 by different means.

Observe that the argument in (23) cannot be extended to non-integral n = 2r,
since in that case we would have to apply the generalized binomial theorem [11,
Theorem 7.46], and then exchange summation and integration. The step involving
the beta function requires that n = 2r be integral.

Remark 2.8 (Failure of Carlson’s theorem). By (10), the sum

Q(r) := r
∞∑
k=0

(−1)k
Γ(r − k − 1

2
)Γ(k + 1

2
)

Γ(2k + 2)Γ(r − 2k)

equals π when r > 0 is an integer. In general, for real r > 0, we have Q(r) 6= π
unless r is an integer. This demonstrates such an interesting resistance to the above
applications of Carlson’s theorem. An illustration is depicted in Figure 1 with a plot
of Q(r)− π. Indeed, Q being analytic along vertical strips it can only coincide with
π sporadically. ♦

1 2 3 4

-2

-1

1

2

Figure 1: A plot of Q(r)− π

2.5 À la Fubini

We here give an alternative direct proof of (1) by using the identity

sin(s arctan(t/a))

(a2 + t2)s/2
=

1

Γ(s)

∫ ∞
0

xs−1e−ax sin(tx) dx (24)
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to write the integral (1), in light analogy with the standard evaluation of the Gaussian
integral, as a double integral. Equation (24) is recorded as Entry 3.944.5 in [5] and
briefly proved next. For our purposes and simplicity we will assume that a > 0,
t ∈ R, and Re s > 0. Under these assumptions,

1

Γ(s)

∫ ∞
0

xs−1e−ax sin(tx) dx =
1

2i

1

Γ(s)

∫ ∞
0

xs−1
[
e−(a−it)x − e−(a+it)x

]
dx

= Im
1

(a− it)s

=
sin(s arctan(t/a))

(a2 + t2)s/2

where, in the final step, we used that a− it =
√
a2 + t2 e−i arctan(t/a).

Limiting special cases of (24) include∫ ∞
0

e−ax
sin(x)

x
dx = arctan(1/a),

∫ ∞
0

sin(x)

x
dx =

π

2

where the last integral converges only conditionally. Let ε > 0. Using these identities,
we obtain

Γ(s) arctan(1/ε) =

∫ ∞
0

zs−1e−z dz

∫ ∞
0

e−εx
sin(x)

x
dx

=

∫ ∞
0

∫ ∞
0

zs−1e−z−εx
sin(x)

x
dx dz

=

∫ ∞
0

∫ ∞
0

zs−1e−(1+εt)z
sin(tz)

t
dt dz

= Γ(s)

∫ ∞
0

sin(s arctan(t/(1 + εt)))

t((1 + εt)2 + t2)s/2
dt

where, in the last step, we changed the order of integration by Fubini and employed
(24). Note that sin(s arctan(T )) is uniformly bounded, for T > 0, by some Cs, so that
the final integrand is dominated by Cs

t(1+t2)Re s/2 . Also, for the 0 6 t 6 1 the integrand

is uniformly bounded. Hence we can let ε → 0 and use dominated convergence to
obtain

π

2
=

∫ ∞
0

sin(s arctan(t))

t(1 + t2)s/2
dt.

This proves (1). We remark that, as in Theorem 2.7, the proof is valid for complex
s with Re s > 0.
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2.6 À la Fourier

We conclude this section by highlighting a connection between the evaluation of the
Jauregui–Tsallis integral and basic results in Fourier analysis.

Let f be integrable on (−π, π) having Fourier coefficients f̂(k) := 1
2π

∫ π
−π f(t) e−ikt dt.

One of the fundamental properties of the Dirichlet kernel [11, Theorem 8.27 (ii), p.
534] is that, for an integer n,

n∑
k=−n

f̂(k) eikx =
1

2π

∫ π

−π

sin
(
(n+ 1

2
)θ
)

sin
(
θ
2

) f(x− θ) dθ. (25)

In particular, if f is symmetric,

n∑
k=−n

f̂(k) =
1

π

∫ π/2

−π/2

sin((2n+ 1)θ)

sin θ
f(2θ) dθ. (26)

Assume n is a non-negative integer. Let’s proceed in evaluating the integral

T

(
n+

1

2

)
=

∫ π/2

−π/2

sin((2n+ 1)θ)

sin θ
(cos θ)2n dθ. (27)

In light of (26), consider

g(θ) := (cos(θ/2))2n =
1

22n

n∑
k=−n

(
2n

n+ k

)
eikθ.

Then, again by (26),

T

(
n+

1

2

)
= π

n∑
k=−n

ĝ(k) = πg(0) = π,

which is an apparent agreement with the previous evaluations.
The result T (n) = π can be achieved by an inductive application of the recursions

employed in the proof of Corollary 4.5.

3 Creative telescoping

In this section we wish to provide alternative proofs of the Jauregui–Tsallis con-
jectures using the method of creative telescoping. A very nice introduction to the
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underlying ideas of creative telescoping is [9] while a fine brief discussion is to be
found in [2, Ch. 3]. Our aim is to illustrate and advertise the utility of this method.
An obvious advantage of this approach is that it can be automated, to a large de-
gree, in a computer algebra system such as Maple or Mathematica. A downside of
this aspect is that proofs employing creative telescoping usually provide less insight
into the problem than classical proofs. Also, we need to point out that we only
prove the half-integral case in this section. The complete analytic case needs further
consideration such as presented in Section 2.3.

First, we reprove Theorem 2.2.

Theorem 3.1. For positive integers n,

S(n) = n
∞∑
k=0

(−1)k
Γ(n− k − 1

2
)Γ(k + 1

2
)

Γ(2k + 2)Γ(n− 2k)
= π. (28)

Proof. Denote the summand as

f(n, k) := n(−1)k
Γ(n− k − 1

2
)Γ(k + 1

2
)

Γ(2k + 2)Γ(n− 2k)
.

Then, using creative telescoping, we find that[
(N − 1) + (K − 1) · k (2k + 1) (2k + 1− 2n)

(2k − n)n2

]
· f (n, k) = 0 (29)

where N and K are the shift operators in n and k. That is, N · g(n, k) = g(n+ 1, k)
and K ·g(n, k) = g(n, k+1). We remark that verifying (29) is easy while the difficult
part lies in discovering it algorithmically.

Since n is a positive integer. the sum has finite support and hence summing (29)
over k = 1, 2, 3, . . . telescopes to

(N − 1) · S(n) = 0.

In other words, S(n+ 1) = S(n) and the claim follows from S(1) = π.

As a second demonstration, we reprove Theorem 2.3. The proof, in contrast to
the previous example, employs creative telescoping with both discrete and continuous
parameters. In hindsight, that is in light of (23), the two statements proven in
Theorems 3.1 and 3.2 are equivalent.

11



Theorem 3.2. For positive half-integers r,

T (r) =

∫ ∞
−∞

sin(2r arctan(t))

t(1 + t2)r
dt = π. (30)

Proof. Denote the integrand by

g(r, t) =
sin(2r arctan(t))

t(1 + t2)r
.

Again, using creative telescoping, we find[
(R− 1)−Dt

(
t (t2 + 1)

2 (2r + 1)
R +

t (3r + 1)

2r (2r + 1)

)]
· g (r, t) = 0 (31)

where R is the shift in r and Dt the derivative with respect to t. Integrating (31)
with respect to t over the real line, it follows that (R − 1) · T (r) = 0 whenever the
integrals converge. That means, T (r + 1) = T (r) when Re r > 0.

The boundary cases T (1/2) = π and T (1) = π are readily verified and they lead
to T (n/2) = π for all positive integers n.

4 Chebyshev polynomials

Let Tn and Un denote the Chebyshev polynomials of the first and second kind, re-
spectively. Namely, Tn is defined by Tn(cos(θ)) = cos(nθ) and Un is as defined in
(4). In this section we focus on the following two integrals

MT (n, s) :=

∫ 1

0

xs−1Tn(x)
dx√

1− x2
=

∫ π/2

0

cos(nθ) coss−1(θ) dθ, (32)

MU(n, s) :=

∫ 1

0

xs−1Un(x)
dx√

1− x2
=

∫ π/2

0

sin((n+ 1)θ)

sin(θ)
coss−1(θ) dθ, (33)

which are well-defined for Re s > 0 and nonnegative integers n. In fact, using the
trigonometric integrals, MT and MU are well-defined for arbitrary complex n. This
case will be studied in Section 4.1. Observe that these integrals naturally generalize
the Jauregui–Tsallis integral because

T (r) = 2MU(2r − 1, 2r). (34)

For instance, the original conjecture (1) translates toMU(n, n+1) = π
2
. For an integer

n > 0, an independent proof of this fact will be furnished by Corollary 4.5. Another
motivation for our interest in the integral MU(n, s) is the following counterpart of
MT (n, s) listed as Entry 7.346 in [5].
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Proposition 4.1. For n = 0, 1, 2, . . . and Re s > 0 we have

MT (n, s) =
π

s2sB( s+n+1
2

, s−n+1
2

)
=
π

2s

(
s− 1
s−n−1

2

)
. (35)

We therefore investigate the corresponding integral MU(n, s) for the Chebyshev
polynomial of the second kind. The authors are not aware of a previous treatment
of this integral.

Remark 4.2. For a fixed integer n > 0, expand Un(x) in terms of powers of x. Thus,
for Re s > 0, one derives the finite sum representations

MU(n, s) =
1

2

∑
k>0

(−1)k
(
n+ 1

2k + 1

)
B

(
n+ s

2
− k, k +

1

2

)
(36)

=
1

2

∑
k>0

(−1)k2n−2k
(
n− k
k

)
B

(
n+ s

2
− k, 1

2

)
. (37)

We note that (36) directly generalizes (2) which, given (34), is the special case
n = 2r − 1, s = 2r. ♦

The recursive relation between Chebyshev polynomials of first and second kind
leads to the following link between the integrals.

Lemma 4.3. Suppose Re (s) > 0. Then

MU(n+ 2, s)−MU(n, s) = 2MT (n+ 2, s). (38)

Proof. Use the identity Un+2 − Un = 2Tn+2.

Combining Lemma 4.3 and the evaluation (35) we find:

Corollary 4.4 (Finite series for MU(n, s)). For positive integers n and Re s > 0 we
have the parity-dependent identities:

MU(2n− 1, s) =
2π

2s

n∑
j=1

(
s− 1

s
2
− 1 + j

)

MU(2n, s) =
π

2s

(
s− 1
s−1
2

)
+

2π

2s

n∑
j=1

(
s− 1
s−1
2

+ j

)

13



These identities allow yet another proof of the Jauregui–Tsallis integral evaluation
T (r) = 2MU(2r − 1, 2r) = π, in the case of half-integral r.

Corollary 4.5. For positive integers r we have

MU(r, r + 1) =
π

2
.

Proof. Using Corollary 4.4 we find

MU(2n− 1, 2n) =
2π

22n

n∑
j=1

(
2n− 1

n− 1 + j

)
=

2π

22n

22n−1

2
=
π

2

and, likewise, MU(2n, 2n+ 1) = π
2
.

On the other hand:

Lemma 4.6. Suppose Re (s) > 0. Then

MU(n, s)−MU(n− 1, s+ 1) = MT (n, s). (39)

Proof. Applying the addition formula

sin((n+ 1)θ) = sin(nθ) cos(θ) + cos(nθ) sin(θ)

in the definition (33) yields the claim.

This result enables us to avail another sum representation of MU(n, s) when
n is an integer. The statement below complements the parity-dependent sums of
Corollary 4.4.

Lemma 4.7. For positive integers n and Re (s) > 0,

MU(n, s) =
π

2s

n−1∑
j=0

1

2j

(
s+ j − 1
s+n−1

2

)
+

π

2(s+ n)

( s+n
2
1
2

)
. (40)

Proof. Using the functional equation from Lemma 4.6 repeatedly, we find

MU(n, s) = MU(n− 1, s+ 1) +MT (n, s) (41)

= MU(0, s+ n) +
n−1∑
j=0

MT (n− j, s+ j)

= MU(0, s+ n) +
n−1∑
j=0

π

2s+j

(
s+ j − 1
s+n−1

2

)

14



where we used the evaluation (35) of MT . Then (40) follows from

MU(0, s) =

∫ 1

0

xs−1√
1− x2

dx =
1

2
B
(
s
2
, 1
2

)
=

π

2s

( s
2
1
2

)
(42)

which is a consequence of Euler’s integral representation of the beta function.

Remark 4.8. The recurrence in (41) is equivalent to

2t

[
2F1

(
1, s

t

∣∣∣∣12
)
− 1

]
= s2F1

(
1, s+ 1

t+ 1

∣∣∣∣12
)
.

Thus for all n = 0, 1, 2, . . . we obtain the evaluation

2F1

(
1, s+ n

t+ n

∣∣∣∣12
)

= 2n
(t)n
(s)n

[
2F1

(
1, s

t

∣∣∣∣12
)
−

n−1∑
k=0

2−k
(s)k
(t)k

]
,

valid for all s, t. ♦

Observe that for integers m,n formula (40) shows that MU(n,m) is rational
when m and n have the same parity, and is a rational multiple of π otherwise. This
is illustrated in Figure 2 in which we have written τ := π

2
. The apparent pattern

for when MU(n,m) evaluates as τ will be proved and explained in (58). A rather
convenient alternative is to apply the same reasoning as for (27) with the exponent
2n of the cosine replaced by 2m for m 6 n.



2 τ 4
3

3
8
π 16

15
5
16
π 32

35
35
128

π 256
315

63
256

π 512
693

231
1024

π

τ 5
3

τ 22
15

7
16
π 136

105
25
64
π 368

315
91
256

π 3712
3465

21
64
π 1280

1287

4
3

τ 8
5

τ 32
21

15
32
π 64

45
7
16
π 512

385
105
256

π 1024
819

99
256

π

τ 23
15

τ 166
105

τ 488
315

31
64
π 5168

3465
119
256

π 64384
45045

57
128

π 61696
45045

26
15

τ 164
105

τ 496
315

τ 5408
3465

63
128

π 68864
45045

123
256

π 67072
45045

957
2048

π

τ 167
105

τ 494
315

τ 1816
1155

τ 70544
45045

127
256

π 13952
9009

501
1024

π 1167104
765765


Figure 2: A matrix of MU(n,m) values for 1 6 n 6 6 and 1 6 m 6 12
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4.1 Hypergeometric evaluations in the complex case

We now extend the results on MU(n, s) to a complex parameter n. The outcome will
be expressed in terms of hypergeometric functions; see (7) for the definition of the
latter. The following evaluation will be utilized.

Proposition 4.9. For Re s > 0 we have

2F1

(
1, s
s+1
2

∣∣∣∣12
)

= 1 +

√
π Γ
(
s+1
2

)
Γ
(
s
2

) = 1 +
π

2

( s−1
2
1
2

)
. (43)

Proof. We rewrite the terms of the hypergeometric series as

(s)n(
s+1
2

)
n

(
1

2

)n
=

s

s+ 1

(s+ 1)n−1(
s+3
2

)
n−1

(
1

2

)n−1
(44)

to obtain

2F1

(
1, s
s+1
2

∣∣∣∣12
)
− 1 =

s

s+ 1
2F1

(
1, s+ 1

s+3
2

∣∣∣∣12
)
. (45)

The right-hand side hypergeometric series now allows an implementation of Gauss’s
second summation theorem [8, Eqn (15.4.28)]

2F1

(
a, b
a+b+1

2

∣∣∣∣12
)

=
Γ(1

2
)Γ(a+b+1

2
)

Γ(a+1
2

)Γ( b+1
2

)
(46)

which yields the value seen in (43).

Remark 4.10. Proposition 4.9 may also be proved mechanically using the methods
of Section 3. Converting the hypergeometric series to an integral and after some
manipulation, (43) becomes equivalent to

2s
∫ 1

0

x(s−3)/2

(x+ 1)s
dx = B

(
1

2
,
s− 1

2

)
+

2

s− 1
(47)

and holding for Re s > 0. Now, both sides of (47) remain bounded on vertical lines
in the positive half-plane. Hence, to apply Carlson’s Theorem 2.4, we need only
confirm (47) at sufficiently large positive odd integers. To this end we discover and
verify that both sides of (47) satisfy the recursive relation

(s+ 2)(s+ 3)f(s+ 4)− (s+ 1)(2s+ 3)f(s+ 2) + (s2 − 1)f(s) = 0,

together with initial conditions f(3) = 3, f(5) = 11
6

. ♦
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Here comes an exact counterpart to Proposition 4.1.

Theorem 4.11. For complex n and Re s > 0, we have

MU(n, s) =
π

2s

(
s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)
− π

2
. (48)

Proof. Suppose n is a positive integer. In this case MU(n, s) is given by (40), namely
that

MU(n, s) =
π

2s

n−1∑
j=0

1

2j

(
s+ j − 1
s+n−1

2

)
+

π

2(s+ n)

( s+n
2
1
2

)
. (49)

In order to write the right-hand side in hypergeometric terms, we note that

∞∑
j=0

(
a+ j

b

)
xj =

(
a

b

)
2F1

(
1, a+ 1

a− b+ 1

∣∣∣∣x) (50)

and this is immediate from the definition (7). Consequently,

n−1∑
j=0

(
a+ j

b

)
xj =

(
a

b

)
2F1

(
1, a+ 1

a− b+ 1

∣∣∣∣x)− xn(a+ n

b

)
2F1

(
1, a+ n+ 1

a+ n− b+ 1

∣∣∣∣x)
which, applied to (49), shows that

MU(n, s) =
π

2s

(
s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)
− π

2n+s

(
s+ n− 1
s+n−1

2

)
2F1

(
1, s+ n
s+n+1

2

∣∣∣∣12
)

+
π

2(s+ n)

( s+n
2
1
2

)
. (51)

The final form in (48) is inferred by substituting the result from Proposition 4.9 that

2F1

(
1, s+ n
s+n+1

2

∣∣∣∣12
)

= 1 +
π

2

( s+n−1
2
1
2

)
,

and after simplifying the residual binomial terms.
Suppose n is a complex number. Since, as in the proof of Theorem 2.7, the main

ingredient is Carlson’s Theorem we will be a bit sketchy here. Let ε > 0. Using the
inequalities employed in the proof of Proposition 2.6, one finds that, for all Re s > ε,

|MU(n, s)| 6 C|n+ 1| e
π
2
| Im n| (52)
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where C = C(ε) is some constant. It follows from Theorem 2.5 that MU(n, s) is
an analytic function of n for fixed Re s > 0. The claim will therefore follow from
Carlson’s Theorem 2.4 once we are able to appropriately bound the right-hand side
of (48) for each fixed s. Using Euler’s integral representation of the hypergeometric
series, we find(

s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)

= − 1

π
sin
(

(s+n−1)π
2

)∫ 1

0

xs−1

(1− x
2
)(1− x)(s+n+1)/2

dx.

This is valid so long as Re s > 0 and Re (s + n) < 1. Observe that the integral
remains bounded on vertical lines Re n = c. On each such line, the sine term may
be bounded by some constant multiple of ed|n| with d = π

2
< π. For fixed s with

0 < Re s < 1, we therefore have, on each fixed line Re n = c 6 0,∣∣∣∣(s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)∣∣∣∣ 6 Ce

π
2
|n| (53)

where C = C(c) does not depend on the imaginary part of n. In light of the
recurrence

(n+ s+ 3)f(n+ 4, s)− 2sf(n+ 2, s)− (n− s+ 3)f(n, s) = 0, (54)

which is readily checked to be satisfied by both sides of (48), one finds that the
growth condition (53) is also fulfilled on each vertical line Re n = c > 0 (assuming
the growth condition for Re n = c and Re n = c+2 the recurrence yields an inequality
for Re n = c+4). Moreover, one discerns from (53) and (54) that the right-hand side
of (48) necessarily is of exponential type. Under the restriction that 0 < Re s < 1,
the equality (48) therefore follows from Carlson’s Theorem 2.4. Since both sides
of (48) are analytic in s, the restriction Re s < 1 may be removed by analytic
continuation.

The following alternative representation is a consequence of Pfaff’s hypergeomet-
ric transformation [8, Eqn (15.8.1)] applied to (48).

Corollary 4.12. For complex n and Re s > 0, we have

MU(n, s) = π

(
s− 1
s−n−1

2

)
2F1

(
s, s−n−1

2
s−n+1

2

∣∣∣∣−1

)
− π

2
. (55)
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As an immediate consequence of (55) we obtain, for Re r > 0,

MU(r, r + 1) = π 2F1

(
r + 1, 0

1

∣∣∣∣−1

)
− π

2
=
π

2
. (56)

This is equivalent to the evaluation (1), previously conjectured by Jauregui and
Tsallis and already proven in Theorem 2.7, which is a motivation for this paper.

Moreover, we can now explain the ‘τ ’s’ in Figure 2. We have from (55) and since

MU(n, s) = −MU(−n− 2, s)

that

MU(n, n+ 1− 2m) = −MU(−n− 2, n+ 1− 2m) (57)

=
π

2
− π

(
n− 2m

m− n+ 1

)
2F1

(
n−m+ 1, n− 2m+ 1

n−m+ 2

∣∣∣∣−1

)
.

Thus

MU(n, n+ 1− 2m) =
π

2
, (58)

for n a nonnegative integer and m = 0, 1, . . . bn
2
c— because in this case the binomial

term vanishes while the hypergeometric term is finite.

Remark 4.13 (On the imaginary axis). The integral MU(n, s), as defined by (33),
converges for Re s > 0. If Re s = 0, then it diverges unless n is an odd integer. One
readily checks that, for s = 0,

MU(2n+ 1, 0) =
π

2
+ (−1)n

π

2
. (59)

Some care, however, should be exercised when using various of the other representa-
tions derived for MU . For instance, an attempt in using the binomial sum obtained
in Corollary 4.4 results in doubling the correct values. The reason comes down to
the fact that the quantity (

s− 1
s
2

)
=

Γ(s)

Γ( s
2

+ 1)Γ( s
2
)

evaluates as
(−1

0

)
= 1 if s = 0; on the other hand, the limiting value (s→ 0) is 1

2
. ♦
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5 Ultraspherical polynomials

Herein, following a suggestion of the referee, we offer a further generalization of the
integrals from the preceding sections. To this end, let us recall the ultraspherical (or
Gegenbauer) polynomials which may be obtained from the explicit [1, Chapter 22]
summation representation

Cλ
n(x) =

bn/2c∑
k=0

(−1)k
Γ(n− k + λ)

k!(n− 2k)!Γ(λ)
(2x)n−2k. (60)

As in Section 2.1, the summation in (60) may be extended to∞. The choice of λ = 1
gives the Chebyshev polynomial of the second kind: C1

n = Un.
In the sequel, we consider the integral

Zλ
n(s, µ) :=

∫ 1

0

xs−1Cλ
n(x)(1− x2)µ dx (61)

which generalizes MU(n, s) as defined in (33). Indeed, MU(n, s) = Z1
n(s,−1

2
). For

convergence of the integral, we will assume that Re s > 0 and Re µ > −1.
Integrating termwise using (60) and invoking the Euler integral representation

for the beta function, it follows that

Zλ
n(s, µ) =

bn/2c∑
k=0

(−1)k
Γ(n− k + λ)

k!(n− 2k)!Γ(λ)
B
(
µ+ 1, 1

2
(s+ n− 2k)

)
2n−2k−1. (62)

Proceeding as in Section 2.1 and using the Legendre duplication formula, the integral
takes on the hypergeometric form

Zλ
n(s, µ) =

2n−1Γ(n+ λ)

Γ(λ)Γ(n+ 1)
B
(
µ+ 1, s+n

2

)
3F2

(
−n

2
,−n−1

2
,− s+n+2µ

2

− s+n−2
2

,−n− λ+ 1

∣∣∣∣1
)
. (63)

Example 5.1. In the case of λ = 1, µ = −1
2
, this results in

MU(n, s) = 2n−1B
(
1
2
, s+n

2

)
3F2

(
−n

2
,−n−1

2
,− s+n−1

2

− s+n−2
2

,−n

∣∣∣∣1) . (64)

Note that the right-hand side has to be treated with some care: the parameter −n
of the hypergeometric function is a negative integer which, by itself, would result in
a division by zero in the hypergeometric series; here, one of the parameters −n/2
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and −(n − 1)/2 cancels this zero. Note also that the sum of the top and bottom
parameters of the 3F2 agree, so that the hypergeometric series converges only because
it terminates. We return to this point in Example 5.2 but remark that the integrality
of n is crucial for the convergence of the hypergeometric series.

In light of the evaluation of MU , from Theorem 4.11, we have the hypergeometric
identity

2n−1B
(
1
2
, s+n

2

)
3F2

(
−n

2
,−n−1

2
,− s+n−1

2

− s+n−2
2

,−n

∣∣∣∣1) =
π

2s

(
s− 1
s−n−1

2

)
2F1

(
1, s
s−n+1

2

∣∣∣∣12
)
− π

2

where both sides equal MU(n, s). Indeed this identity may be proven automatically
using the tools of Section 3 by showing that both sides satisfy the fourth order
recurrence (s+ n+ 3)N4 − 2sN2 + (s− n− 3) = 0 and checking initial values.

However, we wish to stress that the 2F1 representation of MU established in
Theorem 4.11, beside being simpler and easier to apply (as demonstrated in the next
example), holds for complex n (with the Chebyshev integral naturally interpreted as
on the right-hand side of (33)). It is this case which required separate attention in
Section 4. ♦

Example 5.2. In particular, let us revisit the evaluation MU(n, n + 1) = π
2
, given

in (56), which is equivalent to the Jauregui–Tsallis integral evaluation (1). In terms
of the integral Zλ

n , we have

MU(n, n+ 1) = Z1
n(n+ 1,−1

2
) = 2n−1B

(
1
2
, n+ 1

2

)
2F1

(
−n

2
,−n

2
+ 1

2

−n+ 1
2

∣∣∣∣1) . (65)

Observe that the parameters a = −n
2

and b = −n
2

+ 1
2

add up to the third parameter
c = −n + 1

2
= a + b. The hypergeometric series therefore does not converge when

n is not an integer (if n > 0 is an integer then the sum terminates). In particular,
the classical theorem of Gauss, for summing a 2F1 at 1, does not apply (it needs
Re (c − a − b) > 0). Instead, when n is a nonnegative integer, we may rewrite the
hypergeometric term as

2n−1B
(
1
2
, n+ 1

2

) n∑
k=0

(−1)k
(
n
2k

)(
n
k

)(
2n
2k

) =
π

2
.

Here, in contrast to the previous evaluations of MU , the equality with π
2

is not entirely
obvious; yet, once observed, it may be proven automatically using the methods of
Section 3.
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Moreover, the above argument only applies to the case that n is an integer. That
the right-hand side of (65) does not converge when n is not an integer demonstrates
that the evaluation of Zλ

n(s, µ) as a 3F2, given in (63), cannot be used directly to
recover the results from Section 4. Those were, to a large extent, concerned with the
case of complex n. ♦

Without pursuing this path further, we remark that the present treatment may
be further generalized to the Jacobi polynomials P

(α,β)
n of which the ultraspherical

polynomials are the special case Cλ
n = P

(λ,λ)
n .
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