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Abstract

In their study of a binomial sum related to Wolstenholme’s theorem, Chamber-
land and Dilcher prove that the corresponding sequence modulo primes p satisfies
congruences that are analogous to Lucas’ theorem for the binomial coefficients with
the notable twist that there is a restriction on the p-adic digits. We prove a general
result that shows that similar partial Lucas congruences are satisfied by all sequences
representable as the constant terms of the powers of a multivariate Laurent polynomial.

1 Introduction

Chamberland and Dilcher [CD06] study divisibility properties of the sequences (uεa,b(n))n≥0

defined by the binomial sums

uεa,b(n) =

n∑
k=0

(−1)εk
(
n

k

)a(2n
k

)b

(1)

and connect these sums to Wolstenholme’s theorem. In the follow-up study [CD09], they
further investigate the special case (ε, a, b) = (1, 1, 1)

u(n) =

n∑
k=0

(−1)k
(
n

k

)(
2n

k

)
, (2)

which is sequence A234839 in the OEIS [OEI25]. One of the interesting arithmetic proper-
ties that Chamberland and Dilcher [CD09] prove is the following set of congruences which,
as we recall below, can be viewed as partial Lucas congruences.
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Theorem 1.1 ([CD09, Theorem 2.2]). Let p ≥ 3 be a prime. Then

u(pn+ k) ≡ u(n)u(k) (mod p)

for all integers n, k ≥ 0 with k ≤ (p− 1)/2.

Let p, here and throughout, denote a prime, while n and k are used to denote non-
negative integers. It follows immediately, as observed in [CD09, Corollary 2.1], that, if
n = n0 + n1p+ · · ·+ nrp

r is the p-adic expansion of n, then

u(n) ≡ u(n0)u(n1) · · ·u(nr) (mod p), (3)

provided that 0 ≤ nj < p/2 for all j = 0, 1, . . . , r. These congruences are reminiscent of
the classical congruences (

n

k

)
≡

(
n0

k0

)(
n1

k1

)
· · ·

(
nr

kr

)
(mod p) (4)

for the binomial coefficients due to Lucas [Luc78] where n = n0 + n1p + · · · + nrp
r and

k = k0 + k1p+ · · ·+ krp
r with 0 ≤ nj , kj < p.

For the sequence (u(n))n≥0 from (2), the congruences (3) are restricted to digits nj less
than p/2. On the other hand, Gessel showed [Ges82, Theorem 1] that the Apéry numbers

A(n) =
n∑

k=0

(
n

k

)2(n+ k

k

)2

(5)

in place of u(n) satisfy the congruences (3) for all digits 0 ≤ nj < p (see also Example 2.4).
Accordingly, we say that the Apéry numbers satisfy Lucas congruences modulo all primes,
and the same has since been shown to be true for many other (families of) sequences
[McI92], [Gra97], [SvS15], [RY15], [MS16], [Del18], [ABD19], [Gor21], [HS22]. A historical
survey of Lucas congruences can be found in [Me4]. On the other hand, the sequence
(u(n))n≥0 satisfies the Lucas congruences only partially.

Chamberland and Dilcher [CD09] proved Theorem 1.1 directly from the binomial sum
(2) using the Lucas congruences (4) for the binomial coefficients. We show that Theo-
rem 1.1, as well as similar results, can be uniformly proved for a large class of sequences
representable as constant terms. Here, we say that a sequence (c(n))n≥0 is a constant term
if it can be expressed as

c(n) = ct[P (x)nQ(x)]

for Laurent polynomials P (x), Q(x) ∈ Z[x±1] in several variables x = (x1, x2, . . . , xd) with
integer coefficients. Throughout, we use the notation ct[F (x)] for the constant term of a
Laurent polynomial F (x) in the variables x. As further detailed in Section 2, we denote
with Newt(P ) the Newton polytope of P . Our main result shows that all constant term
sequences with Q = 1 satisfy partial Lucas congruences.
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Theorem 1.2. Let P (x) ∈ Z[x±1] and choose M ≥ 1 large enough so that 1
M Newt(P )

contains no integral (relative) interior point besides the origin. Then, for all primes p, the
sequence defined by A(n) = ct[P (x)n] satisfies

A(pn+ k) ≡ A(n)A(k) (mod p)

for all integers n, k ≥ 0 with k < p
M .

We note that the special case M = 1 of Theorem 1.2, which proves that certain constant
terms satisfy the (full) Lucas congruences modulo all primes, also follows from a result of
Samol and van Straten [SvS15, Theorem 4.3] (see also [MV16] and [HS22]). We prove
Theorem 1.2 in Section 2 and speculate about a potential converse in Question 2.6. As a
first example, we observe here that it implies Theorem 1.1 as a special case.

Example 1.3. We will show below that the sequence (u(n))n≥0 defined in (2) has the
constant term representation

u(n) = ct

[(
(1 + x)

(
x− 1

x

))n]
. (6)

Clearly, the Newton polytope of P (x) = (1 + x)
(
x− 1

x

)
= x2 + x − 1 − 1

x is the interval
Newt(P ) = [−1, 2]. In particular, 1

2 Newt(P ) =
[
−1

2 , 1
]
contains no integral interior point

besides 0. Therefore, Theorem 1.2 applies with M = 2 to show that Theorem 1.1 indeed
holds for all primes (note that Theorem 1.1 holds rather vacuously for p = 2).

In principle, once found, a constant term representation such as (6) can be algorithmi-
cally proven using creative telescoping [Kou09] (see, for instance, [Gor21] for worked-out
examples). In general, however, it is a difficult problem to find constant term representa-
tions (or even to decide whether such a representation exists; see [BSY23]). Yet, certain
binomial sums can be systematically translated into constant term representations. This is
explained by Rowland and Zeilberger in [RZ14] who attribute the approach to Egorychev.
In the present case we readily obtain

u(n) =

n∑
k=0

(−1)k
(
n

k

)(
2n

k

)

= ct

[
n∑

k=0

(−1)k
(
n

k

)
(1 + x)2n

xk

]

= ct

[
(1 + x)2n

(
1− 1

x

)n]
,

which is equivalent to the claimed representation.

We illustrate the versatility of Theorem 1.2 by showing that Theorem 1.1 for the se-
quence defined by u(n) = u11,1(n) actually continues to hold for the more general sequence
(uεa,b(n))n≥0 defined in (1).
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Corollary 1.4. For any prime p and any integers ε, a ≥ 1, b ≥ 0 we have

uεa,b(pn+ k) ≡ uεa,b(n)u
ε
a,b(k) (mod p)

for all integers n, k ≥ 0 with k < p/2.

Proof. We can readily express uεa,b(n) as a constant term as follows:

uεa,b(n) =
n∑

k=0

(−1)εk
(
n

k

)a(2n
k

)b

= ct

 n∑
k=0

(−1)εk
(
n

k

) a−1∏
i=1

(1 + xi)
n

xki

a+b−1∏
j=a

(1 + xj)
2n

xkj

 = ct[P (x)n] (7)

with the Laurent polynomial

P (x) =

(
1 +

(−1)ε

x1 · · ·xa+b−1

) a−1∏
i=1

(1 + xi)
a+b−1∏
j=a

(1 + xj)
2.

Note that Newt(P ) ⊆ [−1, 2]a+b−1 so that we can apply Theorem 1.2 with M = 2 to arrive
at the claimed congruences.

If desired, further generalizations beyond the sequence (uεa,b(n))n≥0 can be given along
the same lines (for instance, one can replace (−1)ε by any integer r and one can insert
additional powers of suitable binomial coefficients such as

(
n+k
k

)
into the summation).

2 Partial Lucas congruences

When working with several variables x = (x1, x2, . . . , xd), we use common shorthand no-
tation to write, for instance, xv = xv11 xv22 · · ·xvdd where the exponents are specified in the
vector v = (v1, v2, . . . , vd). Given a Laurent polynomial

P (x) =
∑
v∈Zd

cvx
v ∈ R[x±1]

over some ring R of characteristic 0, its support is

supp(P ) =
{
v ∈ Zd : cv ̸= 0

}
.

For subsets S, T of a vector space and scalars λ, we use the typical notations λS =
{λv : v ∈ S} and S + T = {v +w : v ∈ S,w ∈ T}, the latter being the Minkowski sum.
For instance, we note that supp(PQ) ⊆ supp(P ) + supp(Q) for Laurent polynomials P,Q.
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Some care has to be applied since 2S ⊆ S+S while, in general, 2S ̸= S+S. Such issues
disappear if we work with convex sets. Indeed, for all convex sets S we do have 2S = S+S
(to see this, take v,w ∈ S and note that v +w = 2

(
1
2v + 1

2w
)
∈ 2S because convexity of

S implies that 1
2v + 1

2w ∈ S). For further background, we refer to [Sch93]. The Newton
polytope of P , denoted as Newt(P ), is the convex hull of supp(P ). In other words,

Newt(P ) =

 ∑
v∈supp(P )

λvv : λv ≥ 0,
∑

v∈supp(P )

λv = 1

 . (8)

It is a well-known basic property of Newton polytopes that

Newt(PQ) = Newt(P ) + Newt(Q) (9)

for all Laurent polynomials P,Q.
To make the statement of Theorem 1.2 more transparent, we make the simple observa-

tion that, when considering nontrivial sequences defined by A(n) = ct[P (x)n], the Newton
polytope always contains the origin.

Proposition 2.1. Let A(n) = ct[P (x)n] for P (x) ∈ C[x±1]. If A(n) ̸= 0 for some n ≥ 1,
then Newt(P ) contains the origin.

Proof. If A(n) ̸= 0 for n ≥ 1 then, by definition, the origin is in the support of P (x)n so
that, in particular, 0 ∈ Newt(Pn). Since Newton polytopes are convex by definition, it
follows from (9) that

Newt(Pn) = nNewt(P ).

Thus, 0 ∈ nNewt(P ) and, since n ̸= 0, we also have 0 ∈ Newt(P ).

Let γ > 0. If 0 ∈ Newt(P ) then, corresponding to (8), the (relative) interior points of
γNewt(P ) are those that can be expressed as

∑
v∈supp(P ) λvv with λv ≥ 0 and

∑
v∈supp(P ) λv <

γ.
We are now in a position to prove Theorem 1.2 which we restate as Theorem 2.2 in

a slightly more general form, writing Zp for the ring of p-adic integers. Our proof is an
extension of the argument in [HS22] where the special case M = 1 is proved.

Theorem 2.2. Let P (x) ∈ Zp[x
±1] and choose M ≥ 1 so that 1

M Newt(P ) contains no
integral (relative) interior point besides the origin. Then the sequence defined by A(n) =
ct[P (x)n] satisfies

A(pn+ k) ≡ A(n)A(k) (mod p) (10)

for all integers n, k ≥ 0 with k < p
M .
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Proof. Let us denote with Λp the Cartier operator

Λp

∑
k∈Zd

akx
k

 =
∑
k∈Zd

apkx
k.

Let n, k ≥ 0. Using that P (x)pn ≡ P (xp)n modulo p and proceeding as in [HS22] and
[BSY23], we have

A(pn+ k) = ct[P (x)pnP (x)k]

≡ ct[P (xp)nP (x)k] (mod p)

= ct[P (x)nΛp[P (x)k]]. (11)

Let cxv, with c ̸= 0, be a term of Λp[P (x)k]. This means that cxpv is a term of P (x)k so
that, in particular,

pv = λ1v1 + λ2v2 + · · ·+ λtvt

where vi ∈ supp(P ) ⊆ Newt(P ), λi ∈ Z≥0 and λ1 + λ2 + · · ·+ λt = k. Accordingly,

v = µ1v1 + µ2v2 + · · ·+ µtvt, µi =
λi

p
, (12)

where µi ≥ 0 and µ1 + · · · + µt = k/p < 1
M . By Proposition 2.1, we may assume that

0 ∈ Newt(P ) since the congruences (10) are trivially true otherwise. We then observe
that, since 0 ∈ Newt(P ), the (relative) interior points of 1

M Newt(P ) are those that can
be expressed as

∑
v∈supp(P ) λvv with λv ≥ 0 and

∑
v∈supp(P ) λv < 1

M (compare with (8)).

Accordingly, the point v in (12) is an integral interior point of 1
M Newt(P ). Hence v = 0

since, by assumption, there are no other integral interior points. We conclude that

Λp[P (x)k] = ct[P (x)k]

which, together with (11), implies that

A(pn+ k) ≡ ct[P (x)n ct[P (x)k]] = ct[P (x)n] ct[P (x)k] = A(n)A(k) (mod p),

thus showing (10).

We record the following simple special case of Theorem 2.2 that is particularly conve-
nient to apply. However, as illustrated in Examples 2.4 and 2.7, it does not capture the
full strength of Theorem 2.2. Here, we denote with deg(P ) the largest exponent to which
any variable xi or its inverse x−1

i appears in the Laurent polynomial P (x).

Corollary 2.3. Let P (x) ∈ Zp[x
±1]. Then the sequence defined by A(n) = ct[P (x)n]

satisfies
A(pn+ k) ≡ A(n)A(k) (mod p)

for integers n, k ≥ 0 with k < p
deg(P ) .
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Proof. This follows directly from Theorem 2.2 with M = deg(P ). Alternatively, this can
be concluded from [BSY23, Lemma 3.1] with r = 1 and Q = 1.

Example 2.4. The Apéry numbers A(n), defined in (5), have the constant term represen-
tation [Str14, Remark 1.4]

A(n) = ct[P (x)n], P (x) =
(x+ y)(z + 1)(x+ y + z)(y + z + 1)

xyz
.

Since the Newton polytope of P (x) contains no integral interior point besides the origin,
it immediately follows from Theorem 2.2 (with M = 1) that the Apéry numbers A(n)
satisfy the Lucas congruences for all primes, as proved directly from the binomial sum (5)
by Gessel [Ges82, Theorem 1]. On the other hand, note that Corollary 2.3 only provides
weaker partial Lucas congruences because deg(P ) = 2.

Remark 2.5. Suppose that P,Q ∈ Zp[x
±1]. We briefly indicate that Theorem 2.2 indi-

rectly also applies to constant terms of the form A(n) = ct[P (x)nQ(x)] when Q ̸= 1. In
that case it follows, for instance, from [BSY23, Lemma 3.1] with r = 1 that

A(pn+ k) ≡ A(k)B(n) (mod p) (13)

where B(n) = ct[P (x)n] provided that p > deg(P kQ). The condition on p is satisfied

if p > k deg(P ) + deg(Q) or, equivalently, k < p−deg(Q)
deg(P ) . In light of (13), by applying

Theorem 2.2 to the constant term B(n), we can determine the values of A(n) modulo p
provided that the p-adic digits of n are suitably restricted (to satisfy the conditions needed
for (13) as well the subsequent applications of Theorem 2.2).

It is natural to wonder about a possible converse statement of Theorem 2.2. For in-
stance, if a constant term sequence (A(n))n≥0 satisfies partial Lucas congruences, does
there always exist a, potentially alternative, representation A(n) = ct[P (x)n] such that
these congruences can be concluded from Theorem 2.2? In other words:

Question 2.6. Suppose that A(n) = ct[P0(x)
nQ0(x)] with P0, Q0 ∈ Z[x±1] is a constant

term that satisfies A(0) = 1 as well the Lucas congruences (10) for integers n, k ≥ 0
with k < p

M . Does A(n) necessarily have a representation A(n) = ct[P (x)n] for some
P (x) ∈ Z[x±1] with 1

M Newt(P ) containing no integral interior point besides the origin? If
not, is this true under an additional natural condition?

We make two comments on the statement of this question before illustrating the ques-
tion and its implications in two special instances. First, we note that the condition A(0) = 1
should be seen as part of satisfying the Lucas congruences: indeed, the Lucas congruences
in the alternative form (3) naturally imply A(0) = 1 if we apply them for n = 0 with
an empty p-adic expansion so that the right-hand side of (3) is the empty product with
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value 1. Moreover, the condition A(0) = 1 is needed to avoid the case of the zero se-
quence which can be represented as a constant term with P = 1 and Q = x and which
trivially satisfies the congruences (10) (but, clearly, cannot have a representation of the
form A(n) = ct[P (x)n]).

Second, we observe that there is no loss of generality in reducing to the case Q0(x) = 1
in Question 2.6. Indeed, if A(n) satisfies the Lucas congruences (10) for integers n, k ≥ 0
with k < p

M then, in particular,

A(pn) ≡ A(n) (mod p).

In [BSY23, Proposition 5.1] it is shown that, for constant terms, these congruences imply,
for large enough p, the stronger congruences

A(prn) ≡ A(pr−1n) (mod pr) (14)

(known in the literature as Gauss congruences) and that, in fact, A(n) = A(0) ct[P0(x)
n] =

ct[P0(x)
n] (that is, Q0(x) can be replaced by 1 in the constant term representation that

we started with).
The following example illustrates Question 2.6 for a specific sequence. In that particular

case, the answer to Question 2.6 is affirmative.

Example 2.7. Consider the generalized Delannoy sequence [OEI25, A081798]

C(n) =
n∑

k=0

(
n

k

)(
n+ k

k

)(
n+ 2k

k

)
,

which starts with the values 1, 7, 115, 2371, 54091, . . . and counts lattice walks from the
origin to (n, n, n) using steps (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1).

We can proceed as in Example 1.3 to express C(n) as the constant term

C(n) = ct

[
n∑

k=0

(
n

k

)
(1 + x)n+k

xk
(1 + y)n+2k

yk

]
= ct[P (x, y)n]

with

P (x, y) = (1 + x)(1 + y)

(
1 +

1 + x

x

(1 + y)2

y

)
.

The Laurent polynomial P has support {−1, 0, 1}×{−1, 0, 1, 2}. In particular, its Newton
polytope is the rectangle [−1, 1] × [−1, 2] which has the interior integral points (0, 0) and
(0, 1). Hence, Theorem 1.2 can be applied withM = 2 to deduce partial Lucas congruences.

However, it follows from a result of McIntosh [McI92, Theorem 6] that the sequence
(C(n))n≥0 satisfies the full Lucas congruences for all primes. We note that this can also
be concluded from expressing C(n) as the diagonal of the rational function 1/(1− x− y−
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z − xyz), which naturally encodes the lattice walk count, and applying a general result
of Rowland and Yassawi [RY15, Theorem 5.2]. It is therefore a natural special case of
Question 2.6 to ask whether the sequence (C(n))n≥0 has an alternative constant term
representation such that Theorem 1.2 can be applied with M = 1 to deduce the full Lucas
congruences. In this case, the answer is affirmative. Indeed, we can also write

C(n) =

n∑
k=0

(
n

k

)(
n+ 2k

k, k, n

)
= ct

[
n∑

k=0

(
n

k

)
(1 + x+ y)n+2k

xkyk

]
= ct[P̃ (x, y)n]

with

P̃ (x, y) = (1 + x+ y)

(
1 +

(1 + x+ y)2

xy

)
.

The Newton polytope of P̃ is the triangle with vertices (−1,−1), (−1, 2), (2,−1). Its only
interior integral point is (0, 0) and so Theorem 1.2 applies with M = 1 and we are able to
conclude the full Lucas congruences.

Example 2.8. The following is a specific instance for which it would be of particular in-
terest to know the answer to Question 2.6. Consider the constant term sequence (A(n))n≥0

defined by A(n) = ct[Pn] with the symmetric Laurent polynomial

P =
(zx+ xy − yz − x− 1)(xy + yz − zx− y − 1)(yz + zx− xy − z − 1)

xyz
.

This representation was recently discovered by Gorodetsky [Gor21] through a clever com-
putational search. Gorodetsky succeeded in finding such constant term representations for
all known sporadic Apéry-like sequences, the present sequence (A(n))n≥0 typically being
labeled (η) in the literature [AvSZ11]. For all sporadic Apéry-like sequences besides (η),
these constant term representations are such that the Newton polytope of the underlying
Laurent polynomial only has the origin as an interior integral point, thus implying (as in
Example 2.4 for the Apéry numbers) that the sequence satisfies the Lucas congruences.
The Newton polytope of the above Laurent polynomial P , however, contains the lattice
points (1, 0, 0), (1, 1, 0) and their permutations as interior points so that the Lucas con-
gruences cannot be directly concluded (though Theorem 2.2 can be applied with M = 2
to imply Lucas congruences if the digits are less than p/2). Nevertheless, Malik and the
author [MS16] had previously shown that all known sporadic Apéry-like sequences satisfy
Lucas congruences (with the case (η) requiring an ad-hoc and technical argument). It
is natural to wonder whether the sequence (η) has a, yet-to-be-discovered, constant term
representation A(n) = ct[P̃ (x)n] such that the Newton polytope of P̃ only has the origin as
an interior integral point. An affirmative answer to Question 2.6 would imply that such a
representation exists. In any case, this example and its history underscore the difficulty in
finding constant term representations for a given sequence. On the other hand, as pointed
out in the introduction, constant term representations, once found, can be algorithmically
proven (at least in principle) using, for instance, creative telescoping [Kou09].
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3 More general congruences

In addition to establishing Theorem 1.1, the partial Lucas congruences for the sequence
(u(n))n≥0, Chamberland and Dilcher [CD09] further prove the following congruences, cov-
ering the p-adic digits that are excluded in the partial Lucas congruences.

Theorem 3.1 ([CD09, Corollary 2.2]). Let

w(n) =
n−1∑
k=0

(−1)k
(
2n− 1

k

)(
n− 1

k

)
. (15)

Then
u(pn+ k) ≡ w(n+ 1)u(k) (mod p) (16)

for all integers n, k ≥ 1 with (p+ 1)/2 ≤ k < p.

In [CD09], this result is obtained by working directly with the binomial sum (2) defining
the numbers u(n). In this section, we give an alternative proof of Theorem 3.1 using the
constant term representation (6). This proof has the benefit of being natural in the sense
that similar computations can be performed for other constant term sequences, though
the present case offers some additional and nongeneric simplifications. In particular, our
proof makes the relationship between the sequences (u(n))n≥0 and (w(n))n≥0 transparent
from the point of view of constant terms (compare (6) and (19)). Further examples where
similar congruences are explicitly worked out for a class of constant term sequences can be
found in [HS22].

Proof. Recall from (6) that

u(n) = ct[P (x)n], P (x) = (1 + x)2
(
1− 1

x

)
.

We therefore have, as in (11), that, modulo p,

u(pn+ k) = ct[P (x)pnP (x)k]

≡ ct[P (xp)nP (x)k] (mod p)

= ct[P (x)nΛp[P (x)k]].

If 0 ≤ k < p/2, then Λp[P (x)k] = ct[P (x)k] = u(k) and we obtain the partial Lucas
congruences u(pn + k) ≡ u(n)u(k) that were obtained more generally in Theorem 2.2.
Here, we assume that (p+ 1)/2 ≤ k < p, in which case we find

Λp[P (x)k] = ct[P (x)k] + x[xp]P (x)k, (17)
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where [xm]f(x) denotes the coefficient of xm in the power series f(x). Here, we used the
fact that the largest exponent of x among all terms in P (x)k is 2k < 2p while the smallest
exponent is −k > −p.

In general, we now need to investigate the numbers cp(k) = [xp]P (x)k. In the present
case, however, we have the remarkable simplification

[xp]P (x)k ≡ ct[P (x)k] (mod p) (18)

for (p+ 1)/2 ≤ k < p, which we will prove below. Assuming for now the truth of (18) and
combining it with (17), we obtain that

Λp[P (x)k] ≡ (1 + x) ct[P (x)k] = (1 + x)u(k) (mod p).

In particular, we conclude that

u(pn+ k) ≡ ct[P (x)nΛp[P (x)k]] ≡ ct[P (x)n(1 + x)] · u(k) = v(n)u(k) (mod p),

which proves generalized Lucas congruences involving the auxiliary sequence defined by

v(n) = ct[P (x)n(1 + x)].

Indeed, this constant term sequence is precisely the sequence (w(n+1))n≥0 introduced by
Chamberland and Dilcher as the binomial sum (15). This can be seen from the following
computation

w(n+ 1) =
n∑

k=0

(−1)k
(
2n+ 1

k

)(
n

k

)

= ct

[
n∑

k=0

(−1)k
(
n

k

)
(1 + x)2n+1

xk

]

= ct

[
(1 + x)2n+1

(
1− 1

x

)n]
= ct[P (x)n(1 + x)], (19)

which is along the same lines as the earlier derivation of (6).
It remains to show that (18) is true for (p + 1)/2 ≤ k < p. Since [xp]P (x)k =

ct[x−pP (x)k], the congruence (18) is equivalent to

ct[(1− x−p)P (x)k] ≡ 0 (mod p). (20)

Since P (x) = (1 + x)2
(
1− 1

x

)
, we have

ct[(1− x−p)P (x)k] = ct

[(
1− 1

xp

)
(1 + x)p(1 + x)2k−p

(
1− 1

x

)k
]
.

11



Using (1 + x)p ≡ (1 + xp) modulo p and (1− x−p)(1 + xp) = (xp − x−p), we conclude

ct[(1− x−p)P (x)k] ≡ ct

[(
xp − 1

xp

)
(1 + x)2k−p

(
1− 1

x

)k
]

(mod p).

The right-hand side is now seen to be 0 because (1 + x)2k−p is a polynomial (here, we use
that k ≥ (p+ 1)/2) in x of degree at most 2k − p < p while (1− x−1)k is a polynomial in
x−1 of degree at most k < p (and so the product does not have a term that is a multiple
of either xp or x−p). This proves (20).

4 Conclusions

We have shown that all sequences representable as the constant terms of the powers of
a multivariate Laurent polynomial satisfy Lucas congruences modulo all primes with a
restriction on the allowed digits. In a related but somewhat different direction, Rowland
[Row22] considers the classical Lucas congruences (4) for the binomial coefficients and
characterizes those digits (r, s) in base p such that the congruences(

pn+ r

pk + s

)
≡

(
n

k

)(
r

s

)
(mod p2)

hold for all integers n, k ≥ 0. Rowland, Yassawi and Krattenthaler [RYK21] further con-
sider the question of partial Lucas congruences modulo p2 for the Apéry numbers (5). In
general, such congruences modulo higher powers of p are more isolated than the general
congruences in Theorem 1.2.

A motivation of the works of Chamberland and Dilcher [CD06, CD09] was the fact
that the sequences (uεa,b(n))n≥0 defined in (1) are connected to Wolstenholme’s theorem.
Indeed, they show that

uεa,b(p) ≡ 1 + (−1)ε2b (mod p3)

for any prime p ≥ 5, except when (ε, a, b) = (0, 0, 1) or (0, 1, 0). It remains an open prob-
lem to understand the composite numbers n satisfying this congruence as well. Andrews
[And99] obtained a q-analog of Wolstenholme’s congruences for the binomial coefficients.
In this spirit, it could be of interest to develop a q-version of the present results.

The sequences (u(n))n≥0 and (uεa,b(n))n≥0 studied by Chamberland and Dilcher [CD09]
were expressed as constant terms in (6) and (7), and these representations were deduced in
a systematic manner from the defining binomial sums. In general, however, it is an open
problem to determine whether a given integer sequence can be represented as a constant
term ct[P (x)nQ(x)] for Laurent polynomials P (x), Q(x) ∈ Z[x±1]. This question was
raised by Zagier [Zag18, p. 769, Question 2] and Gorodetsky [Gor21] in the case Q = 1
and appears in [Str22] for general Q. A classification in the C-finite case was completed in
[BSY23] but the general case remains open, including the special cases of hypergeometric

12



sequences or those with an algebraic generating function (or, even, the intersection of
those).
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