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Abstract
We will present the Hermite Normal Form for matrices with integral
entries. All concepts, however, lift easily to the case of general Prin-
cipal Ideal Domains instead of Z. Finally, we apply our result to bases
of lattices.

1 Introducing the Hermite Normal Form

Consider the set Mn of n × n matrices with integral entries and non-zero determinant. The
subset of invertible matrices is a group and will be denoted by GLn(Z). Its elements will be
called unimodular in the sequel. GLn(Z) acts on Mn by left multiplication, and we’re interested
in finding a class of representatives for the resulting orbits. Given a matrix A ∈ Mn the repre-
sentative of the orbit that A belongs to is more commonly called a normal form for A. Imi-
tating usual Gaussian elimination it’s possible to transform the matrix A into an upper trian-
gular matrix. We’ll see that by choosing the diagonal elements to be non-negative, and by
reducing the entries above the diagonal modulo the diagonal element, we get such a normal
form. It’s called the called the Hermite Normal Form.

HNFn4 





H ∈Mn:
(∀i, j) Hij > 0
(∀i > j) Hij = 0
(∀i < j) Hij < Hjj







The Hermite Normal Form has numerous applications for example in integer programming or
cryptography.

Theorem 1. Let A ∈ Mn. Then there exists a unique H ∈ HNFn such that U A = H for some

unimodular U.

Proof.

“Existence”. As indicated we’ll first imitate Gaussian elimination using row operations. Let’s
start working on the first column. By interchanging rows we put the element a of least modulus
at the (1, 1) position. If a divides all the entries below it, we add multiples of the first row to
make all these entries zero. If not there is an entry b below a such that b is not a multiple of a.
So we find q, r ∈Z such that

b = q a + r, |r |< |a|.

By subtracting q times the first row, we hence get the element r in place of b. Since the mod-
ulus of r is smaller than the one of a, swap rows so that r is at (1, 1) and repeat what we just
did. Finally, all entries in the first column below the diagonal will be zero. Now move on to the
second column�
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“Uniqueness”. If U1 A = H1 and U2 A = H2 where Ui are unimodular and Hi ∈ HNFn then

(U2 U1
−1) H1 = H2. Since U2 U1

−1 is unimodular we see that it suffices to show the following: If
G, H ∈ HNFn and U G = H for some unimodular U then G = H or, equivalently, U = I . First,
note that U has to be upper triangular as are G and H , since the i-th row of H written as a
linear combination of rows of G can not include the first i − 1 rows of G. Together with detU =
± 1 this implies that the diagonal entries of U have to be ± 1. In fact, they have to be 1 since
G, H only have non-negative entries. Finally, suppose that U � I. Let i0 be the index of the first
row of U having a non-zero entry Ui0 j0 where j0 > i0 is chosen to be minimal as well. Then

Hi0 j0 =
∑

j=1

n

Ui0 j Gjj0 = Gi0 j0 + Ui0 j0 Gj0 j0

using the triangularity of U and G. Hence Hi0 j0 ≡ Gi0 j0 mod Gj0 j0. But Gj0 j0 = Hj0 j0 since we
already know that U has 1’s on its diagonal. The condition on G and H that elements above
the diagonal have to be smaller than the diagonal entry then implies Hi0 j0 = Gi0 j0 contradicting
the assumption that Ui0 j0� 0. �

Remark 2. Starting with a matrix A we employed row operations (by left multiplication with
unimodular matrices) to reduce it to its HNF which is upper triangular. If we allow column
operations as well, we are able to even diagonalize A. With the further requirement that diag-
onal entries of the resulting matrix S are non-negative and divide each other, ie. Si ,i|Si+1,i+1

we again obtain a normal form, called the Smith Normal Form . These two normal forms are of
outstanding importance whenever it comes to efficient computation in relation to Z-modules.
They are of theoretic importance as well, as for instance usage of the SNF allows for an imme-
diate proof of the Classification Theorem of finitely generated abelian groups.

2 Application to Lattices

A subgroup Γ <Rn is called a lattice if

Γ =
⊕

Zωi

for a basis {ωi} of Rn. If Γ′ =
⊕

Zαi is a subgroup of Γ then every αi is an integral linear com-
bination of the ωj. In other words,





� α1 �
� αn � 

= A





� ω1 �
� ωn � 



for some A∈Zn×n. Every matrix A ∈Zn×n corresponds in this fashion to exactly one subgroup,
say Γ(A), of Γ. Clearly,

Γ(A)= Γ(B) � A= UB

for some unimodal U . Note that Γ′ is a sublattice if and only if det A � 0 since the αi still have
to form a basis of Rn. These observations allow for the following immediate application of the
Hermite Normal Form.

Corollary 3. The map H →Γ(H) is a bijection between HNFn and the sublattices of Γ.

Note that we also have the following.

Proposition 4. Let A∈Mn. The index of Γ(A) in Γ is given by [Γ: Γ(A)] = |detA|.

Proof. Let H be the HNF of A. Note that this leaves the modulus of the determinant
unchanged. The triangularity of H now makes it easy to see that [Γ: Γ(H)] =detH . �

Remark 5. Let Γ′ be a sublattice of Γ of index m. Then m Γ 6 Γ′ and hence m = [Γ: Γ′] = [Γ/
m Γ: Γ′/m Γ]. Note that Γ/m Γ < Zm

n and that Γ′/m Γ is a subgroup of order m (n − 1). This
way the number of sublattices of index m can be seen to be equal to the number of subgroups of
order m (n− 1) of Zm

n .
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Finally, let’s restate these results for lattices Γ in C. Then Γ =Zω1⊕Zω2 for ω1, ω2∈C linearly
independent over R.

Corollary 6. The sublattices of Γ of index m are in bijective correspondence with the matrices
(

a b

0 d

)

∈Z>0
2×2

such that a d= m and b < d.

In particular, the number of sublattices of index m is given by the sum of the divisors of m,

σ1(m)=
∑

d|m

d.

Example 7. Let p be prime. Then there are p + 1 sublattices of Γ having index p. They corre-
spond to the p +1 matrices

(

1 b

0 p

)

where 06 b < p,

(

p 0
0 1

)

.
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